Siren: Interface for Pattern Languages

ABSTRACT

This paper introduces Siren, a hybrid system for algorithmic
composition and live-coding performances. Its hierarchical
structure allows small modifications to propagate and ag-
gregate on lower levels for dramatic changes in the musical
output. It uses functional programming language TidalCy-
cles |13}, |14] as the core pattern creation environment due
to its inherent ability to sustain uninterrupted audio out-
put even with an incorrect syntax. Borrowing the best from
Tidal, Siren augments the pattern creation process by in-
troducing various interface level features: a multi-channel
sequencer, local and global parameters, mathematical ex-
pressions, and pattern history. It presents new opportuni-
ties for recording, refining, and reusing the playback infor-
mation with the pattern roll component. Subsequently, the
paper concludes with a preliminary evaluation of Siren in
the context of user interface design principles [18|, which
originates from the cognitive dimensions framework for mu-
sical notation design [6] |20].

Author Keywords

Siren, hierarchical structure, algorithmic composition, pat-
tern programming, instrument design, live-coding, pattern
roll

CCS Concepts

eApplied computing — Sound and music computing;
Media arts; eHuman-centered computing — Informa-
tion visualization;

1. INTRODUCTION

For musicians who compose and/or perform with a personal
computer as their main instrument, a number of different
user interface paradigms are available. The digital audio
workstation (DAW) with a graphical user interface (GUI)
that is designed to be accessible and intuitive is arguably
the most popular among these paradigms. However, with
DAWSs designed for accessibility, workflows for composing
music rely extensively on navigating graphical user inter-
face elements, and live performances are often predicated
on extensive preparation. As such, computer musicians who
desire to emphasize aspects of liveness [22], flow |17], and
virtuosity in both composition and performance often turn

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

to trackers and live-coding [7, 20| [19]. While trackers af-
ford virtuosity, most are geared towards composition rather
than being effective tools for improvisation and performance
out-of-the-box, due to limited integration of synthesis capa-
bilities. On the other hand, live-coding can be a powerful
paradigm for performances, but setting up the toolchains
required for live-coding and learning the intricacies of pro-
gramming languages can be inconvenient for many musi-
cians.

We introduce Siren, a performance and composition en-
vironment that marries a tracker-inspired user interface de-
sign with a hierarchical structuring of textual code blocks
for defining musical patterns (Fig. . As such, it represents
a hybrid approach to musical composition based on a fusion
of the tracker paradigm and a purely textual, programming-
oriented notation. This approach lowers the barriers to en-
try for live-coding while enabling for a more intuitive visual
representation of compositions.

The design of the system is informed by previous works
in the fields of programming and music. In this paper, we
first review these strands of research that provide the back-
ground for our work and situate it in the context of research
on interfaces for musical expression. Thereafter we describe
the details of Siren’s design and implementation, and con-
clude with a discussion on how we have utilized Siren as a
powerful engine for live performance and composition.

Siren is available online as a free and open-source soft-
ward | published under the GNU General Public License
v3.(“} and accepts contributions .

2. BACKGROUND RESEARCH

The underlying concepts and user interface design in Siren
have been influenced by previous works. This includes re-
search in the psychology of interaction with notations from
the perspective of programming and music, and previously
developed musical creation software and practices surround-
ing their use.

2.1 Notation and User Interface Design

One approach in previous research that guides the design
of information artifacts—in particular, software for interact-
ing with musical and algorithmic notation—is predicated on
breaking down different aspects of the user experience into
various cognitive dimensions. Based on notions introduced
by Green and Petre [9] for investigating the experience of
interacting with programming languages, researchers have
developed a framework of cognitive dimensions to evaluate
and guide the design of music notation systems and musical
user interfaces |5} |6 18] [20]. This framework also serves
as the basis for design heuristics for supporting virtuosity

"https://github.com/<anonymousForSubmission>/Siren
“https://www.gnu.org/licenses/gpl-3.0.en.html

https://github.com/<anonymousForSubmission>/Siren
https://www.gnu.org/licenses/gpl-3.0.en.html

Logout | O

S

foilcut

s S
d1 (clutchIn 2) d2 (anticipateln : d3
ol ol

Add | Duplicate | Clear Grid
s

patalter "2°

s

videoscene
s
G2_blp

lastdd =
patalter
165072

EEJskey patalter ‘4°
G2_blp2
16nov1235 patalter *3°
2r22r1
nge patalter ‘0'
orha2
patalter *2°

xtail

16n0v123544
s snx ‘4’

S

i 5 X —
transition E = d4 (clutchIn 4) E = ml [. | gd X,y Delete
s

slow 'x* $ n "[<ds5 fs4 g5 as5> fs5 <cs5 c5 f5>] < fs4 ~>
<[fs5 <cs5 c5 <f5 f6>> 1> < [c3 fs5 fs6] > " #velocity "1" #dur
oy
‘64 “water®
Delete

slow (7/3)$nToOrbit $ n "0 ~ 2 0 <[~ 213 4 4 4 [3 41> <~ 0> 2
" #s "gen'x'" #rect 0.5 #comp 0.5 #speed 1.'t’ #comb 0.& t %22

‘chop 14° 3°

‘off 0.5(#speed
g
*off 0.5(cap 0.2 s
P
‘of f @.5(cap 0.2 g2 ‘2 stack [slow 3 § every 3 (¥#coarse "2") $every 7 (off 0.5 (#n "{7
°3° (sinel 3%3")) $n "{[0? ~ 1 <~ 02 242> ~ <1 ~> 1, <3 3 4 3>
g2 ‘4 #s "'x'" #end 0.5 #speed 0.5 #orbit 2 #gain 1, n "
{2}%3" #s "'x'" #speed 2] #gain 1.1
‘chop 3' 2" g22c
¥,x Delete
slow ‘y' $ n "<fs3> ~ <cs3 ~> ~ <a3> ~ <fs3 > ~ " #dur 0.5
#cc3 (discretise (1/4) $ fast 4 $ scalex 0.11 0.9% rand)
822 #cc6 (discretise (1/6) $ slow 0.21 $ rand) #velocity (discretise

*off 0.5(#speed g22¢
-

o (1/16) $ scale 0.85 0.9 $ sinel) [+|n "'x'"
= Pattern History X

1 (clutchIn 2) $ slow (7/3)$nToOrbit $ n "0 ~ 2 0 <[~ 2] 3 4 4 4 [3 41> <~ 0> 2 " #s "gend” #rect 0.5 #comp 0.5 #speed 1.13 #comb 0.1

t2 (anticipateIn 2) $ slow (7/3)$ nToOrbit § n "~ <~ [3 41> 1 ~ ~ ~ <~

A2 & cilonce

~ <~ [43]>5 " #s "gend" #rect 0.5 #comp 0.5

Delete
'x' $ slow (7/3) $ n "{~ 4 5 [<3 4> 37] 3 3,<3 ~ 4%2 3 3%3 ~>}"
#s "'y'" # rel (slow 8 $ scale 0.1 0.8 $ sine)
gain (slow 0.13 $ scale 1.2 1.45 $ rand)

hush

play{t GaussTrig.ar(@.5);r TRand.ar(0,1,t);e EnvGen.ar(Env.
sine(rx0.2+0.3),t);Pan2.ar(Gendy1.ar(minfreq: (rx3+1+
(a%2))%200 %8 2xr-1)}

Figure 1: The user-interface — (top-left) the list of scenes; (middle) the multi-channel sequencer; (top-right)
pattern dictionary; (middle-left) pattern history per channel; (bottom-left) pattern roll; (bottom-right) the

text-based compiler

and flow states in musical user interfaces, and distilled into
a set of questions that apply to such designs . These
approaches have been used to comparatively investigate a
wide variety of notations and and interactive systems for
musical creation, including traditional paper scores, graph-
ical audio synthesis programming (Max or PureData), and
DAWSs. The scope and space in this paper does not allow
for a comprehensive discussion of this body of research and
how it is manifest in specific features in Siren, but a few of
the most prominent aspects are unpacked in Section [

2.2 Trackers

The tracker user interface depicts notation as rows of dis-
crete musical events positioned in columnar channels. Each
cell in a channel can hold a note, parameter change, an effect
toggle and other commands. Different patterns or loops can
have independent timelines, which can be organized into a
sequential master-list to form a complete composition. The
tracker paradigm has been found in the aforementioned lit-
erature to be a highly effective digital instrument that sup-
ports virtuosity, liveness, and flow states while composing.
The earliest implementations of the tracker concept were
released for the AmigaOS platform in the late 80s and early
90s, in applications such as Ultimate Soundtracker (1987)
, NoiseTracker (1989) and Protracketﬂ (1990). (A com-
prehensive history of tracker software can be found online,
courtesy of the Tracker History Graphing Projectﬂ

2.3 Live-coding

3https://sourceforge.net/projects/protracker
“http://helllabs.org/tracker-history/

An early example of networked computer music platforms
is SuperCollider (1996), an environment for audio synthesis
and algorithmic composition that relies on the Open Sound
Control (OSC) protocol. More recently, Conductive , of-
fered a higher-level abstraction that uses density look-ups
for the pattern programming . As an interactive pro-
gramming environment for live-coding, Foxdot provides
a fast and user-friendly abstraction to SuperCollider. Fi-
nally, TidalCycles introduced an embedded Domain
Specific Language (eDSL) for composing patterns as higher
order structures with a highly economical syntax. Most of
these languages allow using the interpreter for the Glasgow
Haskell compiler (GHCi) to trigger a synth by communicat-
ing with SuperCollider via the OSC protocol .

Siren utilizes Tidal as its main pattern programming struc-
ture, and constructs a strategically designed user-interface
around it. Main concepts regarding the software and inter-
face design emerge from pragmatic reasons such as keeping
past playback data, parameterization, and abstractions. We
created a back-end structure for patterns to achieve a fusion
between the affordances of TidalCycles and SuperCollider,
while allowing both to be used as the main pattern language
in Siren.

3. PATTERN CREATION AND SEQUENC-
ING WITH SIREN

Siren is based on a hierarchical structure of data, and a
tracker-inspired user interface, initially intending to build
on the concepts and technology of Tidal. The main idea is
to support a hybrid interaction paradigm where the musical

https://sourceforge.net/projects/protracker
http://helllabs.org/tracker-history/

building blocks of patterns are encoded in a textual pro-
gramming language, while the arranging and dispatching of
patterns is done via a grid-based user interface inspired by
musical trackers [19]. Here, the concept of a pattern is bor-
rowed from the Tidal’s pattern language. It offers means
to represent encoding of musical patterns, a library of pat-
tern generators and combinators, a scheduling system for
dispatching events. By augmenting the patterns, Siren uses
pattern functions that are stored in a pattern dictionary.
These pattern functions can be called from the cells of the
tracker grid along with their optional parameters.

The creation of a pattern introduces a rhythmic element
or a cycle. Sequencing the code allows the user to break
out of linearity by modifying the cycle with different vari-
ables and transitions while allowing events remain coher-
ent in their single and linear timeline. We implemented
a timer based on a concurrent tick mechanism, generated
from Ableton Link [1]. This allows events to be compiled
synchronously and provides a precise timing mechanism in-
between the patterns and other time-related modules (i.e.
pattern roll, and global modifiers).

In the tracker grid, per convention, each column repre-
sents a channel. Channels here are analogous to tracks in
contemporary DAWSs. Each cell in a channel can be filled
with a single function call, and its corresponding pattern
function is located in the pattern dictionary. As such, cells
in channels contain only the call for a function, which, as
is conventional in many programming languages, comprises
its name and the parameters to be passed with it.

A function that is defined in the pattern dictionary can
be called from any cell of any channel. The execution hap-
pens as follows: The timer scans each channel from top
to bottom, triggering pattern functions in cells as they are
encountered. On trigger, Siren performs a look-up in the
pattern dictionary. Once the desired pattern is found, the
pattern is called by parsing its parameters and replacing
them with the user input provided in the calling cell. If the
related pattern in the dictionary is reconstructed correctly,
the channel’s interpreter or compiler executes the function

(see Fig. [3).

3.1 Hierarchical Composition

The main musical structure in Siren is a scene, which acts
as a top-level container and a framework for a composition
[10]. Each scene can be thought of as a grid where each of
its columns are the channels and rows are temporal tracker
steps. The timer cycles through the rows, from top to bot-
tom, and triggers the content of each cell. Each scene has
a pattern dictionary for the storage of pattern functions,
their parameters and implementations. Instances of these
pattern functions can be written into the grid to act as
a function call to patterns on trigger. A user can create
multiple scenes with unique sets of pattern functions and
channels.

3.2 Modules

The layout of Siren is designed to operate in a modular
fashion with modules that contain specific elements of the
system (see Fig. . The user can choose to toggle visi-
bility of these modules at will. It is also possible to store
four customs layouts with different modules. For example,
one layout can maximize the channel module to take up
the full screen, allowing the user to focus on sequencing,
or the console could be made to take up the full screen for
a user experience similar to a text editor, favored by pro-
grammers. Navigating between the layouts is also possible
using convenient key-bindings.

Figure 2: Close-up view of the pattern roll module
— Horizontal dimension denotes time (in this case,
3 seconds quantized into 12 x 3 = 36 bins), and
vertical dimension lists unique samples and notes

3.3 Features

Some of the most powerful aspects of Siren are the features
added on top of pattern manipulation mechanisms.

3.3.1 Parameters and Modulations

The pattern functions on Siren can contain any number of
literal, temporal, and random parameters. These parameters
do not have a specific type, and any kind of input that
reconstructs a syntactically correct pattern is accepted (see
Fig. .

A literal parameter is defined as any substring enclosed in
grave accents (¢). They can be used in multiple places in
the same instance, resulting in the ability to create complex
relationships and modulations.

The parameter ‘t* is reserved for the temporal parameter
and provides the value of timer on execution to the pattern
function. It creates connections that behave differently over
time and it is especially powerful when used in conjunction
with mathematical expressions.

Siren allows the user to incorporate random parameters,
which are constructed by surrounding two numbers with
vertical bars and separated with a comma (e.g. “10,3]¢).
It supports integer and floating point numbers, and could
also be combined with mathematical expressions. This has
the potential to add an extra level of randomness to the
compositions.

3.3.2 Mathematical Expressions

Siren allows using a wide range of mathematical expressions
that enhance the computational and algorithmic aspects of
pattern creation. These expressions can be employed in any
part of the implementation of pattern functions, and upon
successful reconstruction, the expression is replaced with its
final value. It is notated by surrounding the expression with
ampersands (&). An example with temporal parameter is:
slow &log(‘t‘, 2)& $ sound "genl" # end "‘t‘"

where the duration of triggers is in relation with the loga-
rithm of the speed of the pattern. The expressions support
numerical spaces, symbolic calculations, trigonometry, vec-
tor and matrix arithmetic [11].

3.3.3 Global Modifiers

Another feature of Siren is the global modifiers that behave
either by prepending transformation functions or append-
ing parameters to the patterns. For example, #speed -1

Scene

Channels Pattern Functions / Dictionary 1
Node.js
" " ”, " Server/ |+
g neom ny3" . pat1 patz SCLang
22— S — |
: Name: war Egg:"a:reneters [‘e(?tzy‘] i
i Type: "Tidal" : ‘Raw Pattern: "n "x"" #s | Reconstructed [GHCi]
 Transition: ["(clutchin 2)"] ;naw Fatern: 'n X" #5 |
Steps: : 5 : "bd clp” I+l Pattern
R y" : t1 (clutchin 2) v
<$n"2"#s "bd clp" €
Grid Cellsy I+l end 0.2 SCSynth
Function Call . . .
1 2 3 4
pati 2 | vigger | Name: _patf e y
endoo [T Param1 ('x): 2 H N E'C : o : DAG
- : Param2 (y’): end 0.2: iChannel: 0 :
H iTransformation: "fast 2 $" :
.. §Parameter: " Ipf 2000,,5 ¢
| Console ﬂ
iled patt
—| Pattern History |¢:::::::C:o:ng‘z|:8: :F;a: :e:n;:::::::'_
layback dat;
| Pattern Roll |(:::::::?:a:y:?(:::::a:a::::::::::::_
l Front-end | I Back-end |

Figure 3: Block Diagram of Siren — On the left, front-end lays out the hierarchical structure, and on the right,
back-end reveals behind-the-scene components. Solid boxes denote prominent modules and their placement
reveals the hierarchy relations. Dashed boxes and arrows provide examples to the components. Solid arrows
denote message propagation and double-dashed lines represent labeled actions. Square brackets ([]) mark

optional fields.

reverses current playback, and #coarse 2 halves the sam-
pling rate. These modifiers could be either applied to all
active channels, or a subset of those based on the user in-
put (1 2’ affects first two channels where ‘0’ is applied
on all channels).

Included within this module is a sequencer which can ap-
ply the modifiers in specific time intervals. In addition to
its dramatic altering power in the musical output, this se-
quencer supports the main time structure by introducing
another mechanism for algorithmic control.

3.3.4 Pattern History

The live-coding paradigm does not account for the past
playback data due to its intrinsic liveness. However, when
the paradigm is transformed into compositional structure
with various parameterizations, reviewing historical data
gains importance. This module stores successfully compiled
patterns in each channel to ease referring back to the recent
playback. However, it currently stores only the most recent
playback, but it is trivial to extend its functionality to span
entire session.

3.3.5 Pattern Roll

It is possible for algorithms to create patterns otherwise be
too laborious to create by hand. However, while these pat-
terns can be interesting, they sometimes lack the precision
required in a composition. In theory, it is possible to tune
a pattern to serve the desired purpose but this may require
a profound change in the very core of the algorithm; yet it
is probable that tuned pattern may not be as precise as it
is desired to be. In step sequencers, this precision is sup-
plied by its step-wise nature where each step is executed
individually.

Pattern roll (Fig. , inspired by the piano-roll in tradi-
tional DAWs, is the visual editing tool of Siren. This module
is dedicated to record instances of SuperCollider playback
and serves as a visual tool to understand relationships be-
tween individual triggers.

This module supports various edit options to the recorded
sequence, for example, adding, deleting, or otherwise modi-
fying notes. This allows specific refinements to the patterns
where it could be too difficult to establish the desired effect
by modifying the original pattern function. Each note in the
timeline consists of various parameters emitted from the
SuperCollider (e.g. end, speed, coarse, etc.), and each
parameter value can be edited individually. Subsequently,
modifications can be played back synchronously with the
main sequencer. The horizontal axis denotes quantized time
bins, and vertical lists the names of unique samples and
notes. The visibility of labeling on the vertical axis can
be toggled to reduce clutter (see Fig. and . Default
sequence length is 8 seconds and each second is quantized
into 12 bins. However, both parameters can be edited using
the dedicated textboxes on the interface.

3.4 Implementation Details

The current implementation of the system is built as a
JavaScript web application using Node.js [23]. It relies on
a number of open-source libraries, notably, React| for the
construction of the user interface, and CodeMirrox’|for edit-
ing text with syntax highlighting for pattern code.

The back-end, which interfaces with GHqZ] and SuperCol-

Shttps://reactjs.org/
Shttps://codemirror.net/
"Glasgow Haskell Compiler

https://reactjs.org/
https://codemirror.net/

lider, is built using Node.js. This core of the system acts
as a bridge between GHC and the Read-Eval-Print-Loop
(REPL) class of JavaScript. It is integrated with SuperCol-
liderJﬁ which is a JavaScript library for communicating
with and controlling SuperCollider. The back-end starts a
terminal that communicates directly with the compiler, and
compiles the given Haskell code in the same way as contem-
porary text editors such as Atom, Emacs and Vim do.

4. COGNITIVE DIMENSIONS

Originally introduced by Green to investigate the psychol-
ogy of programming languages [9] based on research in cog-
nitive science, and subsequently adapted towards music no-
tation systems and musical user interfaces [6} 20| 18], the
Cognitive Dimensions of Notations framework stands out
as an important criterion for formalized evaluation of Siren.
Each dimension is intended to describe a distinct factor re-
lated to the usability of a particular notation and interfaces.
The dimensions aim to relate to the properties such as gran-
ularity (considered on a continuous scale from high to low),
orthogonality (independence from other dimensions), polar-
ity (characterizing ’desirability’ in a continuous manner for
a given context, not necessarily in terms of the 'good’ and
'bad’), and applicability (in terms of a broad relevance to
any kind of notation)” [18]. Due to the real-estate restric-
tions of this paper, we omit enumerating and explaining
each dimension individually but challenge the reader to ex-
amine them at their leisure.

Building on Green’s definitions, Nash translates the cog-
nitive dimensions into a set of questions that can easily in-
form the end-users. He investigates these questions in the
context of traditional paper scores, Max audio synthesis
environment (Max/MSP), and digital audio workstations
(DAWS) [18]. Even though it would not be tractable to for-
mulate one-to-one mappings between the features of Siren
and specific questions, we propose a personal evaluation of
a subset of them below:

Visibility - “How easy is it to view and find elements or
parts of the music during editing?”

The transparency is one of the key aspects in Siren as it
interfaces the textual information (i.e. pattern language).
Channels lay out the temporal view and pattern roll serves
a visualization tool for the current playback that provides
greater resolution on how each pattern unfolds over time
(see Fig. [2)). Just like in DAWS, the distribution of the mu-
sical information over the layout may enhance the visibility
if related elements are placed and re-sized efficiently.

Juxtaposability - “How easy is it to compare elements
within the music?”

Among the modules in Siren, the major components that
influence musical output are channels and patterns. The
possibility to reorder items inside these modules allows side-
by-side comparisons of musical elements. As the pattern
dictionary expands, it may become harder to find and re-
order a pattern of interest; however, the hierarchical scene
structure could be used to prevent dictionary clutter.

Hard Mental Operations - “When writing music, are
there difficult things to work out in your head?”

Textual programming can be considered one-dimensional
in the sense that the relationships are encoded only in text.
In wvisual programming (i.e. Max/MSP), in addition to the
textual input inside the elements, their placements and in-
terconnections also matters. However at the end, since the
encoding is compiled into machine instructions regardless of
its visual representation, this dimensionality only pertains

Shttps://crucialfelix.github.io/supercolliderjs/

to the user experience, not to the workings of the process
itself [16]. In the case of Siren, the introduction of a tempo-
ral structure, which is essentially textual but communicated
as a visual component, eases the cognitive load on the user
by visualizing the execution order. In addition, pattern roll
visualizes the playback and provides another sensory input
that ultimately helps the perception of the pattern progres-
sion.

Hidden Dependencies - “How clear are the relation-
ships between related elements in the notation?”

Siren uses channels and pattern dictionaries to commu-
nicate between sequencer calls and actual patterns. This
simple communication presents a familiar approach to cross-
reference different patterns across the system. In the case
of crowded scenes, it may be harder to differentiate between
similarly titled elements. However, following a descriptive
and distinctive naming system could eventually overcome
this issue.

Conciseness / Diffuseness - “How concise is the nota-
tion? What is the balance between detail and overview?”

Sequencing the elements using the channel grid provides
greater visibility on the progression of items in its cells. The
size of each step in the grid is virtually unlimited, and thus
may require for scrolling and re-scaling to peek at the big-
ger picture. Subsequently, the pattern roll module provides
visual insight into detailed playback data in terms of its
timing and properties.

Provisionality - “Is it possible to sketch things out and
play with ideas without being too precise about the exact re-
sult?”

In Siren, every scene can be used as a sketchbook to incu-
bate compositional ideas. As such, the volatile sketching of
patterns can be executed very quickly by utilizing the con-
sole module that acts as a traditional text editor. Findings
in the initial experimentation stage lay out the fundamen-
tal ideas, which are subsequently implemented in a more
exacting form in the composition.

Secondary Notation - “How easy is it to make infor-
mal notes to capture ideas outside the formal rules of the
notation?”

On the interface of Siren, each module serves a defined
purpose and offers fixed tools to manipulate data. In terms
of functionality, the system falls short on transforming the
notation to an informal and improvisational tool, yet rear-
ranging the layout to meet specific needs yields powerful
scenarios for experimentation. Moreover, Siren supports
secondary notations through a fusion of textual and visual
approaches to the programming. Annotating the program-
ming languages is still possible through descriptive com-
ments on the text body. It provides non-executable and
convenient statements to realize quick notes, sketches, and
prototyping.

Role Expressiveness - “Is it easy to see what each part
is for, in the overall format of the notation?”

Siren uses a single view that exposes desirable elements
of a composition through a modular layout. Each mod-
ule has a header that clearly specifies its purpose of the
component, however differentiating items at the first glance
might be puzzling. The hierarchical structure is not imme-
diately visible on the interface but inherently constructed
throughout the system. Also, channel headers uses color to
demonstrate different types.

Premature Commitment - “Do edits have to be per-
formed in a prescribed order, requiring you to plan or think
ahead?”

Creation and manipulation of the composition can be per-

formed in any order. This flexible workflow allows for mu-
sical accidents, which may ultimately turn out to be son-
ically enjoyable. On the other hand, in conventional step
sequencers, the edits need to be planned if the aim is to in-
troduce, for instance, a big breakdown in the middle of the
composition. This requires precise adjustments before and
after the event. Comparatively, the scene concept in Siren
can be utilized to introduce a break or a verse. In a way,
it is designed to allow mistakes which may end up fueling
inspiration.

Error Proneness - “How easy is it to make annoying
mistakes?”

The system, in its essence, depends on text input for
naming scenes, patterns, parameters and many other as-
pect of the interface. It is possible to make mistakes in
cross-referencing the grid entries and corresponding pattern
function names. However, if the function call fails to re-
construct syntactically correct patterns, both the interface
and back-end compensates the mistake without disturbing
the musical output. Substantial actions, such as completely
removing a scene, is guarded with a two-step action require-
ment: clicking the remove button, and approving the selec-
tion on the alert box.

5. CONCLUSION

In this paper, we introduced Siren, an environment that
supports algorithmic composition and live-coding through
pattern programming. It constructs a carefully designed
user-interface on top of the computational pattern creation
and features various interface-level properties that, ultimately,
empowers users to be articulate in music creation. After dis-
cussing the key features of the interface and providing an
overview of technical aspects, we analyze the usability of
the system in the perspective of the cognitive dimensions
9], and answer a subset of questions that are developed
around these concepts [18].

6. ACKNOWLEDGMENTS

Authors would like to thank to creators and contributors
of TidalCycles and SuperCollider for their endeavours in
creating and actively maintaining these languages. In addi-
tion, we also thank Kim Bjgrn for including Siren into the
successfully crowdfunded book Push Turn Mowve: Interface
Design for Electronic Music |4] along with SuperCollider
and TidalCycles.

7. REFERENCES

[1] Ableton. Link. https://github.com/Ableton/link,
2016.

[2] R. Bell. An approach to live algorithmic composition
using conductive. Proceedings of LAC 2013, 2013.

[3] R. Bell. Experimenting with a generalized rhythmic
density function for live coding. In Linuz Audio
Conference, 2014.

[4] K. Bjgrn. PUSH TURN MOVE: Interface Design for
Electronic Music. Kim Bjgrn, Vanlgse, Denmark,
2017.

[5] A. Blackwell and N. Collins. The programming
language as a musical instrument. Proceedings of
PPIGO5 (Psychology of Programming Interest Group),
3:284-289, 2005.

[6] A. F. Blackwell, T. R. Green, and D. J. Nunn.
Cognitive dimensions and musical notation systems.
In Proceedings of International Computer Music
Conference, Berlin, 2000.

7]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]
20]

21]

22]

(23]

L. Church, C. Nash, and A. F. Blackwell. Liveness in
notation use: From music to programming. In
Proceedings of the 22nd Annual Workshop of the
Psychology of Programming Interest Group (PPIG
2010), pages 2-11, 2010.

K. Collins. Game sound: an introduction to the
history, theory, and practice of video game music and
sound design. Mit Press, 2008.

T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework. Journal of Visual Languages
and Computing, 7:131-174, 1996.

C. Ince and M. Toka. Siren: Hierarchical composition
interface. In Proceedings of International Computer
Music Conference, Shanghai, 2017.

J. Jong. Math.js.
https://github.com/josdejong/mathjs, 2018.
Accessed: 2017-03-20.

R. Kirkbride. Foxdot: Live coding with python and
supercollider. In Proceedings of the International
Conference on Live Interfaces, 2016.

A. McLean. The textural x. Proceedings of
xCoAx2018: Computation Communication Aesthetics
and X, pages 81-88, 2013.

A. McLean. Making programming languages to dance
to: live coding with tidal. In Proceedings of the 2nd
ACM SIGPLAN international workshop on
Functional art, music, modeling & design, pages
63-70. ACM, 2014.

A. McLean and G. Wiggins. Tidal-pattern language
for the live coding of music. In Proceedings of the 7th
sound and music computing conference, 2010.

C. A. McLean et al. Artist-programmers and
programming languages for the arts. PhD thesis,
Goldsmiths, University of London, 2011.

J. Nakamura and M. Csikszentmihalyi. The concept
of flow. In Flow and the foundations of positive
psychology, pages 239-263. Springer, 2014.

C. Nash. The cognitive dimensions of music notations.
In The Cognitive Dimensions of Music Notations,
2015.

C. Nash and A. Blackwell. Tracking virtuosity and
flow in computer music. In Proc. ICMC, 2011.

C. Nash and A. Blackwell. Liveness and flow in
notation use. In Proc. NIME, 2012.

C. Nash and A. Blackwell. Flow of creative
interaction with digital music notations. In K. Collins,
B. Kapralos, and H. Tessler, editors, The Ozford
Handbook of Interactive Audio, pages 387-404. Oxford
University Press, New York, 2014.

S. L. Tanimoto. Viva: A visual language for image
processing. Journal of Visual Languages &
Computing, 1(2):127-139, 1990.

S. Tilkov and S. Vinoski. Node.js: Using javascript to
build high-performance network programs. IEEE
Internet Computing, 14(6):80-83, Nov 2010.

https://github.com/Ableton/link
https://github.com/josdejong/mathjs

	Introduction
	Background Research
	Notation and User Interface Design
	Trackers
	Live-coding

	Pattern Creation and Sequencing with Siren
	Hierarchical Composition
	Modules
	Features
	Parameters and Modulations
	Mathematical Expressions
	Global Modifiers
	Pattern History
	Pattern Roll

	Implementation Details

	Cognitive Dimensions
	Conclusion
	Acknowledgments
	References

