Siren: Hierarchical Composition Interface

Can Ince
University of Huddersfield
can.ince@hud.ac.uk

ABSTRACT

This paper introduces Siren, a software environment that
aims to reinforce ties between the live-coding performance
and algorithmic composition. It is based on a hierarchical
structure, which propagates modifications to the lower lev-
els with minimal effort, and a tracker-inspired user inter-
face, which allows sequencing patterns on broader time-
lines. It is built on top of the TidalCycles language [1, 2],
and the use of functional programming paradigm allows
uninterrupted audio output even the syntax does not match
the required format. In addition to the pattern composi-
tion, Siren supports programming variations of and tran-
sitions between patterns. It features polyrhythmic timers,
pattern history, local and global parameters, and mathe-
matical expressiveness. Apart from its musical opportuni-
ties, the interface leverages a handful of highlights such as
user authentication and import/export functionality.

1. INTRODUCTION

The practice of live-coding music has grown dramatically
over the recent years, with the increasing number of practi-
tioners being supported by a growing number of program-
ming languages and environments [3]. Meanwhile, hybrid
systems for algorithmic composition that combine multi-
ple approaches led to new possibilities for expression in
live-coding [4]. These systems make use of two or more
languages and communicate through various bindings [5].
The principal drawback of such hybrid systems is that they
may be very complicated, which proposes a high learning
curve for users and, therefore, hinders accessibility. How-
ever, hybrid systems can also offer novel ”powers” to com-
posers and performers by bringing different capabilities to-
gether.

Siren! implements a tracker-inspired user interface that
acts as a wrapper on TidalCycles musical pattern program-
ming language [1, 2] by layering a terse parser for the de-
construction and reconstruction of patterns. The system’s
grid-based user interface allows for the composition and
sequencing of multiple patterns.

! The word Siren denotes a loud, attention-grabbing noise, as well as
being the name of a dangerous creature that lures and captures sailors
with her magical voice and music in the Greek mythology.

Copyright: (©2016 Can Ince et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

Mert Toka
University of California, Santa Barbara
merttoka@mat.ucsb.edu

2. BACKGROUND AND PREVIOUS WORK

Below, we present an overview of the works that have in-
spired and informed the design of Siren. These works can
be categorized into two broad areas: programming lan-
guages for composing patterns and tracker-based applica-
tions.

2.1 Musical Pattern Languages

Programming has started to become an inspiring medium
for making music and it has been advanced by several pro-
gramming languages. An early example is SuperCollider
[6], a platform for audio synthesis and algorithmic com-
position, most notably the Pbind class has extensive ca-
pabilities for pattern programming. More recently, Con-
ductive [7] offered a higher-level abstraction for generat-
ing sets of greater or lesser densities based on an initial
pattern and storing them in a table indexed by the level of
density [8]. Finally, TidalCycles (Tidal, in short) [1, 2] in-
troduced an embedded Domain Specific Language (eDSL)
for composing patterns as higher order structures with a
highly economical syntax. Both Conductive and Tidal al-
low the use of Glasgow Haskell Compiler (GHC) to trigger
a synth using the Open Sound Control (OSC) [9] protocol
[3].

Although Siren is not a programming language by itself,
its creation has been highly inspired by these efforts. The
main motivation for the system emerged from the lack of
features in functional programming and Tidal for creating
compositions, such as memory, parameters, and abstrac-
tions. The system is built on a back-end structure for pat-
terns to achieve a fusion between the affordance of Tidal
and Conductive, while allowing both to be integrated as
the main pattern language. To create polyrhythmic timers
for each channel, we borrowed the "TempoClock” concept
from Conductive.

2.2 Music Trackers

The earliest implementations of the "tracker” concept were
released for the AmigaOS platform in the late 80s and early
90s, in applications such as Ultimate Soundtracker [10]
in 1987, NoiseTracker [11] in 1989, and Protracker [12]
in 1990. The tracker user interface depicts compositions
as rows of discrete musical events positioned in columnar
channels [13]. Each cell in a channel can hold a note, pa-
rameter change, effect toggle and other commands. Dif-
ferent patterns or loops can have independent timelines,
which can be organized into a “sequential master-list” to
form a complete composition. While early trackers had
only rudimentary sampling capabilities, later implemen-
tations have added synthesis, MIDI input/output, plug-in

mailto:can.ince@hud.ac.uk
mailto:merttoka@mat.ucsb.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Figure 1. Interface of Siren: (a) scenes, (b) grid with instances, (c) con-
sole, menu, pattern history (left-to-right), and (d) pattern dictionary

hosting, and recording functionality (e.g. Renoise [14]).

3. CONCEPTUAL STRUCTURE

Below, we explain ideas and working principles behind
Siren (Figure 3). These can be organized into three cat-
egories: patterns as functions, redefining the tracker, and
hierarchical composition.

3.1 Patterns as Functions

In Siren, the patterns correspond to functions that are refer-
enced from the grid cells. Each pattern comprises function
calls, which can be written inside the cells on the tracker
grid. Each cell can accept a single function call. The im-
plementations of these functions are written in the dictio-
naries that are on the right side of the interface. Function
calls, as in many programming languages, are constructed
by the name of the function and its optional parameters.

Siren is designed to treat stored patterns as functions. The
instance (e.g. Figure 4), which is written in one of the cells
in the grid, and the pattern function (e.g. Figure 2), which
contains the implementation of the instance and located in
the dictionary. Furthermore, instance has two components,
function name and parameters that are enclosed in grave
accents (°). Grid-oriented interface keeps track of the
state of each cell in the scene. Once the timer of the cell is
active, it looks up for the pattern specified by the name and
parameters.

These pattern functions can be called from any cell of the
grid. When the timer triggers the related cell, a look-up in
the pattern dictionary is performed. Once the desired pat-
tern is found in the dictionary, the pattern is reconstructed
by parsing its parameters with the regular expressions and
replacing them with the user input. If the related pattern
in the dictionary is reconstructed correctly, GHC compiles
the pattern to be received as an OSC message by Super-
Collider.

Treating patterns as functions enables a new level of ab-
straction by allowing a structural approach to Tidal and by
introducing parameters that can be used in any part of the
pattern (see Section 4.2). The timer of each channel deter-
mines the temporal parameter, which is the time value of
the corresponding channel, and this parameter can be ac-
cessed within the patterns. Once the pattern function gets
the required parameters, it gets reconstructed by the parser

Pattern i Sql

name

Parameter
list XrY

Pattern n X # S
implementation A a rp y// ~ y ~

Figure 2. A pattern function in the dictionary

to fit the required syntax. In that sense, functional structure
supplies memory to Tidal.

3.2 Redefining the Tracker

In a conventional tracker, sounds are triggered by note or
control change messages that are specified in each cell.
Conversely, in Siren, each cell specifies a tidal pattern func-
tion call. This, combined with the introduction of cyclical
structures from Tidal, brings new capabilities to the tracker
concept.

Using a functional programming paradigm was a prac-
tical choice as the nature of the trackers with note-on/off
system was taken into consideration. Siren differs from
other music tracker interfaces mainly by introducing pat-
terns functions instead of notes or control messages in each
cell and having an individual timer for each channel. This
opens up diverse expressive capabilities for the performer/
composer such as using global parameters in a performa-
tive fashion or randomizing the transitions with controlled
boundaries.

3.3 Hierarchical Composition

The creation of a pattern in Siren introduces a rhythmic
element or a cycle, yet the pattern itself lies within its tem-
poral bounds and linearity. Sequencing the code allows the
performer/composer to break out of linearity by modify-
ing the cycle with different variables and transitions while
allowing events remain coherent in their single and linear
clock cycle. This mechanism can be exploited to expand
a sense of repetition and structure on a larger scale. In the
system, this expansion can be achieved using several hier-
archical structures.

The main structure of Siren is the concept of the scene,
which acts as a top-level container for other features. Each
scene accommodates a unique grid (Figure 1b), where the
columns correspond to the various channels and the rows
determine the temporal bounds of the scene. A scene also
has a dictionary (Figure 1d) for the storage of pattern func-
tions that have the ability to define their own parameters
and implementations (Figure 2). Instances of these pattern
functions (Figure 4) can be written into the grid to call cor-
responding pattern function on timer trigger. In addition
to storing pattern functions in its dictionary and the grid
cells in its matrix, a scene also has a duration array and
a transition array. Their sizes are bound to the number of

Mathmatical
Pattern i

ch\lojrﬁ \ &.. &

Temporal
Parameter 't’

Random
Parameter [
i ol
| Literal
> Parameters
[0-9a-2A7]

Figure 3. Conceptual Structure of Siren

Reconstructed
Pattern

Pattern Parameter
Function /7 Types -

channels, in other words, the number of columns in the
grid (see Sections 4.2.4 and 4.2.2).

One account in the system can create multiple scenes
(Figure 1a), each of which has unique pattern functions and
sequences. The construction of the scenes in this manner
enables the performer/composer to quickly realize ideas
for complex musical structures.

4. SYSTEM STRUCTURE

This section explains the underlying structure of Siren sys-
tem and the workflow for composing with it.

4.1 Overview

The core of the system acts as a bridge between GHC
and the Read-Eval-Print-Loop (REPL) class of JavaScript.
The back-end starts a terminal that communicates directly
with the compiler, and compiles the given Haskell code in
the same way as contemporary text editors such as Atom,
Emacs and Vim do. However, the interactive user interface
in Siren, in lieu of a mere text editor, allows for the decon-
struction and reconstruction of the Haskell code in unusual
ways as it is explained in Section 3.

Pattern
name First parameter {i.e."x")
10 10

sgql "0 1 ~ 1° “#speed 0.85°

Second parameter {ie.’y")

Figure 4. An instance of a pattern function in one of the grid cells

4.2 Features

Some of the most powerful aspects of Siren are the features
that are added on top of Tidal’s compositional capabili-
ties (Figure 3). The system also supports networked cod-
ing performances and compositions. To join a networked
performance, performers can launch the system in their
browsers and log-in to a shared account.

4.2.1 Parameters

Each pattern in Siren’s dictionary can consist of any kind
of Tidal patterns and any number of literal or random pa-
rameters. A literal can be used in multiple places in a pat-
tern, hence it can create complex relations when used with
mathematical expressions. These parameters do not have a

specific type, and any kind of input which allows patterns
to be constructed in a modular fashion can be accepted.

Siren also introduces random parameters, which can be
constrained within given boundaries. This can add an ele-
ment of randomness to compositions. This aspect of Siren
could be particularly interesting when used to create multi-
level randomness inside a pattern (e.g. irand (*x ‘) where
z is the value of the random parameter).

4.2.2 Polyrhythmic Timers and Temporal Parameter

Polyrhythmic events are possible through the implementa-
tion of multithreaded timers. Channels have unique cycle
durations, and by adjusting the durations independently,
complex events can be created. The timer can be manu-
ally started, triggered, and stopped. The timer has a tem-
poral parameter, which provides a continuous value to the
pattern functions.

4.2.3 Mathematical Expressions

The system allows utilizing a wide range of mathemati-
cal expressions that enhances the computational and algo-
rithmic aspect of pattern creation. These expressions can
be employed in various places of the implementation of
pattern functions, and upon successful evaluation, the final
value is replaced with the expression. It is parsed by sur-
rounding the expression with ampersands (&). Integration
with parameters, especially constantly increasing tempo-
ral parameter, opens up new possibilities for modulating
certain parts of the pattern. The expressions support nu-
merical spaces, symbolic calculations, function creations,
trigonometry, vector and matrix arithmetic [15].

4.2.4 Transitions

Borrowing the transition functions from Tidal, in Siren, it
is possible to specify a different transition function for each
channel and save them in the scene. This can introduce a
unique complexity between patterns.

4.2.5 Global Transformers and Parameters

In Siren, we introduce global transformations and param-
eters that act on all of the channels, by either prepend-
ing transformation functions or appending parameters to
the patterns. The values of global transformations and pa-
rameters change in real-time as the user updates related
field on the console. Global modifiers account for dramatic
changes in the musical output when used with transform-
ers. For example, #speed -1 reverses current playback
on all channels, #coarse 2 halves the sampling rate of
all active channels, and so on.

Reconstructed
Pattern
(TidalCycles)

osc
--»| Receiver (i.e.
Processing)

Interface
(React js)

Database
(Firebase)

External Input Supercollider
Devices

Figure 5. System Structure of Siren

5. IMPLEMENTATION DETAILS

Siren is a JavaScript-based web application. The back-end,
which interfaces with GHC, is built using Node.js [16].
The React.js [17] library was chosen to build the user in-
terface, due to its stability and active community.

For writing musical patterns, Tidal emerged as the most

convenient choice.The use of functional programming paradigm

offers uninterrupted audio stream even if the syntax does
not match the required format. Due to its nature, Tidal
treats compilation as an evaluation of mathematical func-
tions and avoids changing-state and mutable data. There-
fore it is highly practical for pattern programming.

The dictionary in Siren was implemented using Firebase,
which provides a stable NoSQL database. To highlight pat-
tern code, Siren utilizes the open-source editor CodeMir-
ror. The editor affords various features such as syntax
highlighting and customized themes.

6. FUTURE WORK

We aim to extend Siren’s capabilities so that it can be-
come an assistant to the performer/ composer by gener-
ating patterns and collaborating on a piece. For pattern
generation, we would like to incorporate generative learn-
ing algorithms that will, in time, assume unique stylistic
identities shaped by the user’s actions.

7. CONCLUSION

Siren is a powerful tool to quickly realize musical ideas. It
enhances Tidal’s pattern capabilities and shifts its purposes
towards composition. Having a tracker-inspired user inter-
face on top of the language allows pre-processing of input
in myriad ways and works towards an expressive control
structure.

An early version of Siren has been debuted in the Al-
gorave’? Sth-year anniversary stream. Our observations
showed that the community was excited about the project
and they requested for a release. Currently, it resides in its
GitHub repository > as an open-source project. As of to-
day, the system is still under development and last released
version is 0.1.1-beta. The project has also been featured in
TOPLAP*, the home of live-coding. It has attracted inter-
est from musicians who previously needed to compromise
between Tidal expressiveness and sequencing approach.

The most praised aspect of Siren is often its versatility;
it has many features that distinguish itself from the cur-
rent live-coding medium, yet it is possible to perform a
live-coding session in Siren by approaching it merely as an
online text editor.

Acknowledgments

Authors thank Alex McLean and other contributors of Tidal-
Cycles for creating and maintaining this expressive pattern
language. Thanks also goes to Alexander J. Harker for his
research support and valuable suggestions.

2 algorave.com
3 github.com/cannc4/Siren
4 toplap.org/siren

8. REFERENCES

[1] A. McLean, “The textural x,” Proceedings of
xCoAx2013: Computation Communication Aesthetics

and X, pp. 81-88, 2013.

[2] ——, “Making programming languages to dance to:
live coding with tidal,” in Proceedings of the 2nd ACM
SIGPLAN international workshop on Functional art,
music, modeling & design. ACM, 2014, pp. 63-70.

[3] A. McLean and G. Wiggins, “Tidal-pattern language
for the live coding of music,” in Proceedings of the 7th
sound and music computing conference, 2010.

[4] A.McLean and G. A. Wiggins, “Texture: Visual nota-
tion for live coding of pattern,” in ICMC, 2011.

[5]1 G. Papadopoulos and G. Wiggins, “Al methods for al-
gorithmic composition: A survey, a critical view and

future prospects,” in AISB Symposium on Musical Cre-
ativity. Edinburgh, UK, 1999, pp. 110-117.

[6] J. McCartney, “Rethinking the computer music lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61-68, 2002.

[7]1 R. Bell, “An Approach to Live Algorithmic Compo-
sition using Conductive,” Proceedings of LAC 2013,
2013.

[8] ——, “Experimenting with a Generalized Rhythmic
Density Function for Live Coding,” in Linux Audio
Conference, 2014.

[9] M. Wright, A. Freed et al., “Open SoundControl: A
New Protocol for Communicating with Sound Synthe-
sizers.” in ICMC, 1997.

[10] K. Collins, Game sound: an introduction to the history,
theory, and practice of video game music and sound
design. Mit Press, 2008.

[11] mandarin, NoiseTracker V2.0 by Mahoney Kak-
tus. http://www.pouet.net/prod.php?which=13360,
accessed: 2017-03-30.

[12] eightbitbubsy, ProTracker. https://sourceforge.net/
projects/protracker/, accessed: 2017-03-30.

[13] M. Gallagher, The music tech dictionary: a glossary of
audio-related terms and technologies. Nelson Educa-
tion, 2014.

[14] Renoise, Renoise.
cessed: 2017-03-30.

https://www.renoise.com/, ac-

[15] J.Jong, Math.js. https://github.com/josdejong/mathjs,
accessed: 2017-03-20.

[16] N. Foundation, Node.js.
2017-03-30.

http://nodejs.org/, accessed:

[17] F. Inc., React. https://facebook.github.io/react/, ac-
cessed: 2017-03-30.

https://algorave.com/
https://github.com/cannc4/Siren
https://toplap.org/siren/
http://www.pouet.net/prod.php?which=13360
https://sourceforge.net/projects/protracker/
https://sourceforge.net/projects/protracker/
https://www.renoise.com/
https://github.com/josdejong/mathjs
http://nodejs.org/
https://facebook.github.io/react/

	 1. Introduction
	 2. Background and Previous Work
	2.1 Musical Pattern Languages
	2.2 Music Trackers

	 3. Conceptual Structure
	3.1 Patterns as Functions
	3.2 Redefining the Tracker
	3.3 Hierarchical Composition

	 4. System Structure
	4.1 Overview
	4.2 Features
	4.2.1 Parameters
	4.2.2 Polyrhythmic Timers and Temporal Parameter
	4.2.3 Mathematical Expressions
	4.2.4 Transitions
	4.2.5 Global Transformers and Parameters

	 5. Implementation Details
	 6. Future Work
	 7. Conclusion
	 8. References

