
Programming For Music:

Explorations in Abstraction

Can Ince

School of Music, Media and Humanities

University of Huddersfield

A thesis submitted to the University of Huddersfield in partial
fulfilment of the requirements for the degree of

Master of Arts in Music

January 2018

Acknowledgements

I would like to thank several people who contributed to this research,

either directly or indirectly. I must first thank Alexander J. Harker for his

valuable supervision and mentorship throughout this research. Besides

my advisor, I would like to thank to Frederic Dufeu and the rest of the

Creative Coding Lab for their insightful comments and encouragement. I

also thank to contributors of TidalCycles and SuperCollider for creating

and actively maintaining these languages. I thank my friend Mert Toka

for the stimulating discussions and his contributions on this research. Last

but not the least, I would like to thank my parents and my friends for

supporting me spiritually throughout this research and my life in general.

Copyright Statement

1. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the Copyright) and he has given The Uni-

versity of Huddersfield the right to use such copyright for any administrative,

promotional, educational and/or teaching purposes.

2. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. The details of these regulations

may be obtained from the Librarian. This page must form part of any such

copies made.

3. The ownership of any patents, designs, trademarks and any and all other in-

tellectual property rights except for the Copyright (the Intellectual Property

Rights) and any reproductions of copyright works, for example graphs and ta-

bles (Reproductions), which may be described in this thesis, may not be owned

by the author and may be owned by third parties. Such Intellectual Prop-

erty Rights and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant Intellectual

Property Rights and/or Reproductions.

3

Abstract

Creatively, algorithmic processes open up all sorts of possibilities which

would be either impossible or laborious to create by hand. This thesis

is my attempt to explore depth of the rhythm and time through algo-

rithms accompanied by a software, Siren, which is designed for pattern

sequencing.

This thesis documents an effort in attempting to develop a novel technical

approach to musical composition that functions not just as a tool, but also

as an extended cognition that shapes the musical creative process.

To this end, several ideas and design approaches derived from previous

work in computer science, philosophy, music, and other disciplines are

utilized to conceive of (and subsequently implement as a software appli-

cation) a musical interface that is tailored towards algorithmic approaches

to music composition. This thesis presents the result of that effort as well

as the process of its creation. A discussion evaluating the abstractions

and cognitive dimensions which inform the design and implementation of

the application are also included.

Beside basic curiosity and experimentalism, there are several reasons why

I wanted to adopt algorithmic methods and this thesis will serve as a

guide and a notebook towards achieving a stability in music with fusion

of various concepts.

Keywords: digital music notations, algorithmic composition, abstractions,

trackers, sequencers, patterns

Contents

List of Submitted Materials iii

List of Figures iv

List of Tables v

1 Context 1

1.1 Aims . 1

1.2 Algorithms . 2

1.3 Abstractions . 4

1.4 Time . 5

1.4.1 Rhythm . 5

1.4.2 Repetition . 6

1.5 Pattern Programming . 7

1.5.1 TidalCycles . 8

1.6 Creative Coding / Live Coding . 9

1.6.1 Command-line Interface (CLI) 10

1.7 Musical User Interfaces . 11

1.7.1 Musical Trackers . 11

2 Siren: An Ecosystem for Musical Patterns 13

2.1 An Ecosystem for Pattern Creation and Sequencing 13

2.1.1 Hierarchical Composition . 15

2.1.2 Patterns as Functions . 16

2.1.3 Features . 16

2.1.3.1 Parameters and Modulations 16

2.1.3.2 Mathematical Expressions 17

2.1.3.3 Polyrhythmic Timers and Temporal Parameter . . . 17

2.1.3.4 Transitions . 18

i

2.1.3.5 Global Modifiers . 18

2.1.3.6 Pattern Roll . 18

2.2 User Interface Design Principles . 20

2.2.1 Cognitive Dimensions of Notations 20

2.2.2 Design Heuristics for Virtuosity 24

2.3 Siren: Implementation and Usage . 25

2.3.1 System Structure . 26

2.3.2 Modules . 27

2.3.2.1 Scenes . 27

2.3.2.2 Channels . 27

2.3.2.3 Patterns . 27

2.3.2.4 Global Modifiers . 28

2.3.2.5 Console . 29

2.3.2.6 Pattern History . 29

2.3.3 Timer Structures . 29

3 Pieces and Music 32

3.1 Musical Flow . 32

3.2 Commentary . 34

4 Conclusions 36

5 Future Work 38

References 40

ii

List of Submitted Materials

1. Siren, An Ecosystem for Pattern Creation and Sequencing

2. Two pieces: 1sc34dl and foilcut

3. Pattern studies - Recordings with Siren

4. Various custom TidalCycles functions

5. Various SuperCollider SynthDefs

iii

List of Figures

2.1 Siren, based on a hybrid visual approach that marries live-coding with

a tracker-inspired environment, is meant to serve as an ecosystem for

musical patterns and pattern-based compositions. 14

2.2 Example for an instance of a pattern function call. 16

2.3 Example for a pattern function located in the pattern dictionary. Siren 16

2.4 The pattern roll / sub-sequencer in Siren. 19

2.5 The block diagram for Siren – The “front-end” explains the hierarchical

structure of Siren, and the communication between different compo-

nents are shown with arrows. Examples and explanations of the most

prominent items are presented with thin dashed boxes. Optional fields

are shown with square brackets ([]). 26

2.6 The pattern dictionary in Siren. 28

2.7 Channel setup of Siren. 29

2.8 A channel in Siren. 29

2.9 The Global Modifiers module. 29

2.10 The Console module. 30

2.11 The Pattern History module. 30

2.12 An older prototype of Siren, with a poly-duration timer. 31

3.1 Partial visualisation of the patterns used in the foilcut 35

iv

List of Tables

2.1 The Cognitive Dimensions from [21]. 21

v

Chapter 1

Context

This chapter provides a foundation based on previous work and situates the thesis

in the context of related research. To this end, six topics are discussed. The first

is notion of algorithms, with emphasis on how they find their place in musical com-

position. The second is the notion of abstractions as they apply to the information

theory, and how this theoretical concept underpins ideas that are manifest in musical

interfaces in general, and Siren in particular. Following this is a discussion on the

conceptualizations of time and patterns in music, and how different abstract under-

standings of time and patterns inform approaches to music composition, especially

with regard to digital musical instruments. The subsequent section overviews the

concept of creative coding, with emphasis on ”live coding” of music. Finally, this

chapter discusses the impact of user interfaces on musical creation, paying special

attention to music trackers.

1.1 Aims

The research aims to accomplish the following:

1. Building a musical interface informed by the user interface design principles

from previous research.

2. Developing an intuitive technical approach for musical composition and perfor-

mance, not just as a tool, but also as an extended cognition facility that shapes

the musical process.

3. Understanding design characteristics that are relevant for a software application

that aims to function as an extended cognition facility, specifically for support-

ing a hybrid approach to live coding and composition

1

4. Using the aforementioned approaches in musical compositions.

1.2 Algorithms

The Greek philosopher, mathematician, and music theorist Pythagoras (ca. 500 B.C.)

documented the relationship between music and mathematics that laid the foundation

for our modern study of music theory and acoustics. The Greeks believed that the

understanding of numbers was key to understanding the universe. Part of their educa-

tional system, the quadrivium, was based on the study of four subjects that comprised

arithmetic, geometry, and astronomy, and music. Although there are numerous trea-

tises on music theory dating from Greek antiquity, the Greeks left no explicit evidence

of how mathematical procedures applied to the composition of music [53].

Since then, several categories have emerged from the study of algorithms for music

composition, including the aleatoric (or chance) methods (e.g. Cage), determinacy

(e.g. Schoenberg, Webern, and Berg), and stochastic (or probabilistic) methods (e.g.

Xenakis and Hiller). Composers have also been applying not only mathematical

models, but also biological paradigms such as L-systems [58] and genetic algorithms

[22] to the creation of music. These days, since some form of almost any of the

aforementioned process categories may be modeled computationally, almost any of

these models may be used for music composition in computational environments [53].

Before we move on to other topics, this chapter will benefit from a more involved

discussion of what an algorithm and composition is is.

An algorithm is defined as ”a fixed step by step procedure for accomplishing a

given result [...]” and ”a defined process or set of rules that leads to and asserts

development of a desired output from a given input” in the Computer Dictionary and

Handbook[54]. However, the precise meaning of the term algorithmic often depends

on the context it is used in. Several criteria have been proposed to form a generic

understanding of the term. These include the requirement to have a finite number

of steps, to have both well-defined input(s) to and output(s) from the algorithm, to

yield a result in a finite period of time, and to have a precise definition for each step

of the algorithm [53]. If the algorithm is to be programmed to function as a human

being would, it can be said to involve decision-making and development procedures.

In this case, the terms random, stochastic, or aleatory (all pertaining to chance) would

more accurately describe a process, rather than algorithmic (i.e. using defined logical

procedures) or intelligent (simulating human mental processes) [55]. More recently,

2

Autechre[56] mentioned about their use of algorithmic tools in an interview with

Sound on Sound Magazine.

It seems that for a lot of people, if they hear something that doesn’t sound

regular, they assume it’s random. If live musicians were playing it, they’d

probably call it jazz or something. But the fact that it’s coming out of a

computer, as they perceive it, somehow seems to make it different. For

me it’s just messing around with a lot of analogue sequencers and drum

machines. It’s like saying, ’I want this to go from this beat to that beat

over this amount of time, with this curve, which is shaped according to

this equation.’

Composition is the process of creating a musical work. The meaning of the term

composition relates to putting together parts into an unified whole. Moreover, the

process of composing music is often characterized by trial and error. The composer

executes an idea, listens, and determines if revisions are necessary. As such, the

composer continuously evaluates the effectiveness of a part in relation to the whole.

In my work, I conceptualize a compositional algorithm as a set of rules, a de-

scription and transformations in an artificial computer language of a pattern creation

process. It can be understood as a written score that embodies a procedure for com-

posing. However, instead of humans instrumentalists playing the music described in

the score, a computer does.

An early example of algorithmic music is the works of Iannis Xennakis. Xennakis

generated his first piece Metastaseis (1955-56) [51] dealing with large number of data

sets, and started using computers as a necessity to assist these calculations, produc-

ing three works in 1962 [61]. Since then, numerous tools have been developed for

composers looking to explore such ideas. Max/Msp [50], a modulable programming

environment, SuperCollider [33, 34], a platform for audio synthesis and algorithmic

composition, and many others has been used by composers and researchers who have

been inspired by the stochastic and dynamic algorithmic methods. Such ideas and

theories can be remodeled and re-explored efficiently in these new environments and

to date, there have been developments in the field through a multitude of algorithmic

composition tools, which allow a composer to work more quickly by offering them a

close match between the creative methodology and the algorithmic implementation.

A more recent manifestation of this approach lies at the heart of the ‘Algorave’ move-

ment, which is centered around live-coded music, often accompanied with live-coded

visuals. The audience experience in these performances is quite rich, and accounts of

3

Algorave events report audiences “looking up at the projected codes rather than each

other,” and that it feels “in many ways like an art performance with some dancing”

[5].

1.3 Abstractions

The concept of ‘abstraction’ is central in computer science [57]. An ‘abstraction‘

can be defined as “a concept or idea not associated with any specific instance” or

“the process of formulating general concepts by abstracting common properties of

instances” [43]. It is notable that the root of the word, ‘abstract’, relates to the

immaterial and vague. However, abstractions in computer science don’t always have

to be so, as they may represent particular domain-specific notions rather clearly.

The Free Online Dictionary of Computing defines abstraction as ”[producing] a

more defined version of some object by replacing variables with values (or other

variables).” According to Dijkstra, abstraction in computer science is not as much

about ignoring details as capturing essential details. Abstraction is the tool that gives

computer science its algorithms and variables, and it permeates the whole subject [of

computer science]. [13]

The instantiation of abstractions is often phrased as software reuse, as described

by Krueger [29]:

Abstraction plays a central role in software reuse. Concise and expressive

abstractions are essential if software artifacts are to be effectively reused.

Effectiveness of a reuse technique can be evaluated in terms of cognitive

distance and an intuitive gauge of the intellectual effort required to use

the technique. Cognitive distance is reduced in two ways: (l) Higher

level abstractions in a reuse technique reduce the effort required to go

from the initial concept of a software system to representations in the

reuse technique, and (2) automation reduces the effort required to go

from abstractions in a reuse technique to an executable implementation.

This idea can also be applied to live coding practice, where the abstraction are

essential in order to add dynamism to the sound. A written code can be propagated

in different musical forms with a slight changes in the input. Here, the instantiations

of abstractions may be considered as affordances for virtuosity; since a bi-directional

relationship is achieved between the output realized by the system and the inputs

provided by the musician (see Sec.1.6).

4

It’s possible to realize the effectiveness of a particular method, with that method

being one node in the ladder of abstraction. A stable structure for the usage of

abstraction is realized with connecting the nodes. As we go higher on the abstraction

level/order, the parameters that controls the abstraction is reduced. Even if the input

may seem unwild, it may cause musical output to become overly dynamic.

One particular case of how such an understanding of abstractions informs the

design of Siren is the notion that Patterns (see Section 1.5). In Siren, patterns are

represented in a modular fashion. This modularity is supplied by the pattern functions

(see Section 1.3) presented within the software, which allow for the instantiation of

an abstracted patterns.

1.4 Time

Rhythm, meter and duration are the concepts that govern the human understanding

of musical temporality. Without the differentials of rhythm and meter, it wouldn’t

be possible to have any distinguishing qualia with regard to the musical experience.

Musical temporality is thus at the core of human existence, enabling the human

consciousness to constitute meaning and to relate to being as formed.

Yet, a precise characterization of time and temporality as we experience it, as it

relates to the evaluation of algorithms on a digital circuit, has often been purposefully

ignored in computer science [38]. One of the main focus of this thesis is the integration

and exploration of temporal structures in algorithmic music (see Section 2.1). To this

end, different methods are used to work with time and conceptualize it. In turn, each

of these different methods had a significant impact on the software and the music.

Time could be understood and manipulated in many different forms and ways, some

of which engender characteristics that pertain to certain musical genres or memes.

1.4.1 Rhythm

Rhythm is everywhere in our daily life, from heart beating to walking through brain

functions. Ordinarily, we believe that our perception of it, in an abstract form,

may precede the music itself. In this understanding, music is simply one of many

aural phenomena made up of sound (or sounds). Sound is perceived because it is

temporally formed. It is at this point that sound becomes music. Without rhythm,

we would not hear sound – just as we would not recognize any letters without the

understanding that such letters can be organized into words. In the words of Lefebvre,

”everywhere where there is interaction between a place, a time and an expenditure of

5

energy, there is rhythm” [30]. It follows that experiential qualia can be categorized

broadly into those pertaining to repetition (of timbre, movements, gestures, actions,

situations, differences, etc.), and to interferences, with respect to both linear and

cyclical processes, which can be articulated using concepts such as birth, growth,

peak, decline, and end. (The third chapter of this thesis will elucidate further how

this categorization pertains to my approach to an interface for musical composition

and performance.)

The concepts of repetition and variation (of patterns, in time), which can man-

ifest in balance or in a way in which one overpowers the over, supports to enable

the experiences of similarities that arise from repetition, and progression or genera-

tion which can serve to both affirm or negate anticipation at various points in time

[30]. In the musical interface that is proposed in this thesis, the articulation of such

effects are supported extensively through different timer structures that allow con-

current execution of patterns with respect to different temporal intervals. Hence, it

becomes possible for the composer to fluidly transition between different experiences

of repetition, while retaining the pattern affordances of the live coding and tracker

paradigms1.

1.4.2 Repetition

Rhythm cannot manifest without repetition. It cannot exist without reprises, and

without measure. However, even in repetition, instances are not perfectly identical –

absolute repetition does not exist. The relation between repetition and difference is

a significant one in relation to music composition and performance. Many powerful

musical forms such as the canon, the fugue, the sonata, and the rondo have been

shaped around repetition as a core value [55].

One important aspect to consider when reasoning about repetition in this context

is the information differential, i.e. the density of new information over time, and the

capability of a human listener to absorb and comprehend (or apprehend) it. Much of

the expressive power in musical composition relates to the manipulation of the balance

between redundancy and new information. Repetition and continuity are potent tools

in the composer’s arsenal, which can be utilized to manipulate the predictability in

musical expression and to shape the ephemeral listener’s hypothesis. Both cyclic

repetition and the linear repetition can be part of this mixture and they interfere

1The reader will find, in the following sections of this chapter, discussions on how significant
attention to patterns informs the musical composition interfaces, the practice of live coding, and the
affordances of musical trackers.

6

with one and another constantly [30]. Based on Lefebvre’s thoughts on repetition, an

abstract level, almost every aspect of existence can be thought to manifest through

cyclical and linear repetitions. The linear relates to the the monotony of sounds, of

gestures, and of imposed structures; while cyclical repetition is periodic, restarting

continuously .

In this thesis, the concept of the meter is considered to be one of the most im-

portant aspects of patterns. This is a well established phenomenon that allows us

to analyze the characteristics of rhythm as discussed in the previous section. ”Me-

ter is a perceptually emergent property of musical sounds, that is, an aspect of our

engagement with the production and perception of tones in time” [31].

It is important to be able to distinguish between the concepts of rhythm and me-

ter. Rhythm relates to the occurrence of temporal patterns that are ”phenomenally

present in the music.” Such patterns can be referred to as ”rhythmic groups.” Tem-

poral patterns, however, are not always strictly founded on the ”action duration” of

musical event. A rhythmic pattern can occur ”between the the start-end points of suc-

cessive events” [31]. In contrast, meter involves the initial perception of the listener,

as well as subsequent anticipation of a series of events that the listener abstracts from

the rhythmic surface of the music as it unfolds in time. Altering the meter of pat-

terns manifests and manipulates flow in the musical structure, and thereby allows for

emotion to be encoded and decomposed by the transitions and differentials between

musical information.

1.5 Pattern Programming

Lefebvre states that music can function as “an alternative to purely mathematical

models of calculation and measure” [30]. In music, by applying algebraic operations

to temporal structures, such ”mathematical models of calculation and measure” can

be represented as events in time. These temporal structures can be combined or

modified to create sequential events, on a computer. Such ideas are the basis for

several programming languages for the purpose of specifying musical patterns.

In SuperCollider, one of the most notable features for pattern programming is

the Pbind class, the principal function of which is to combine various streams of

information into one ‘event stream.’ Using this facility it is possible to create ‘value

patterns’ which are mapped to different variables and can be used to perform in

creative ways.

7

More recently, Conductive [6] has been designed as a language that offers a higher-

level abstraction. In Conductive, for example, it is possible to generate sets of varying

densities based on an initial pattern, and to store them in a table indexed by their

level of density, so that they can be retrieved and utilized in compositions[7]. Finally,

TidalCycles (or Tidal, in short) [36, 37] introduced an embedded Domain Specific

Language (eDSL) for composing patterns as higher order structures with a highly

economical syntax. The ideas encapsulated in Tidal and its implementation have

greatly informed the effort that is the subject of this thesis, and warrant a more

detailed discussion.

1.5.1 TidalCycles

In Tidal, time is conceptualized in a cyclical, rather than linear manner; and the term

arc is used to describe a temporal range, delimited by specific begin and end time

and it is based on rational subdivisions.

Tidal represents each musical event, delimited by a start and stop time that are

termed the event onset and offset, as an arc. The association of a value pertaining

to two time arcs is termed an event. In this case, the first arc is associated with the

onset and offset of the event, and a second art relates to its ’active’ portion. This

second arc is utilized in cases where an event consists of multiple peaces – when it is

important for each piece to ’store’ the original arc that denotes its context. Finally, in

Tidal, patterns represent functions that associate an arc to a list of events. Patterns

can be ’queried’ with an arc to return a list of all events that are ’active’ during

a given time. These arcs may have overlapping events, which supports polyphony

in music without requiring the introduction of events that deal with multiple values

(even though using chords in lieu of atomic events is a possibility).

Conceptually, all Tidal patterns are infinite in length. They can cycle indefinitely,

and they can be ’queried’ for events at any point in time.

Tidal does not have built-in synthesis capabilities itself; rather, it is designed to

be used primarily with the SuperDirt sampler [2], and can communicate with other

instruments over the Open Sound Control(OSC) and MIDI protocols.

While it is possible to represent long-term structure in Tidal, the focus is on live

coding situations where long-term structure is controlled and continuously manipu-

lated by the performer [39]. This absence of a facility for defining long term structure

in Tidal is the one of the key issues that has driven the creation of the software

described in this thesis.

8

1.6 Creative Coding / Live Coding

This research has been informed by Amabiles componential theory of creativity, which

rests on two important underlying assumptions [4]. First is the idea of a continuum

where on one end is found the low, ”ordinary” levels of creativity found in everyday

life, and another end is characterized by the ”higher” levels of creativity found in sig-

nificant inventions, performances, scientific discoveries, works of art, etc. The second

and related underlying assumption is that there are degrees of creativity manifest in

the work of any single individual, even within one particular domain – this is what

enables an individual to progress and persevere within that domain. The ”level of

creativity” that a person can tap into at any given point in time is a function of

the creativity components which are in operation at that particular time, within and

around the person.

In my own practice, programming is used consistently as a way of musical thinking.

It would be fair to state that the development of a musical ecosystem involves many

creativity components which, ultimately, enables progress within the creative process.

The word programmer is often used to implicitly refer to a kind of technician who

tends to a computing machine. However, the same word can be used beyond this

context, in relation to a craft which is situated in an artistic context. Confronting

the singular identity of the programmer as artist is a particularly salient excerpt from

John Stuart Mill [42] which was also mentioned by Donald Knuth:

Several sciences are often necessary to form the groundwork of a single

art. Such is the complication of human affairs, that to enable one thing to

be done, it is often requisite to know the nature and properties of many

things. Art in general consists of the truths of Science, arranged in the

most convenient order for practice, instead of the order which is the most

convenient for thought. Science groups and arranges its truths so as to

enable us to take in at one view as much as possible of the general order

of the universe. Art brings together from parts of the field of science most

remote from one another, the truths relating to the production of the

different and heterogeneous conditions necessary to each effect which the

exigencies of practical life require .

One of the key issues in the practice of creative coding is the particular amount

of time dedicated to working on a potential implementation without yet obtaining

a result. However, it can be said that there exists a potential for enlightenment

9

when working with yet-non-functional (or even malfunctioning) code. In this state,

it is possible for the programmer to conceive of a potential feature where the ideas

can be emergent. A decision made at this point, affects the flow of the software

and eventually reflect on the musical output. Thus, in the process of developing an

instrument for creative coding, one goal is to expose the programmer to such windows

and perspectives. Even aspects of ordinary life can be exploited to serve the creative

process in such ways, with the appropriate tools.

Live coding is a solid examples of creative coding. It is an often improvised per-

formance practice which includes the writing and/or editing of a generative rule set

that governs a current and ephemeral flow of artistic creation. It is an act of expres-

sion and communication that involves the creation, modification and display (as-is

or as manifest in their output) of codes. Regardless of the ”superficial” appearance

of the live coding act, many fundamental aspects are shared with core artistic prac-

tices. The practice of live coding involves a broad range of variation and style. For

example, some performances may be based on previously written code, while others

may be coded from scratch. The feedback from the interpreter which can become a

part of the performance – in some performances this feedback is sparse, or not shared

with the audience, while in others it is verbose. Live coding is a good example to

computer programming retaining aspects of a science and an art, and that the two

facets complement each other beautifully[28].

While it is possible to utilize the designed software to execute a live coding perfor-

mance, the main focus of this research is on the pattern creation aspect rather than

performative aspects of live coding.

1.6.1 Command-line Interface (CLI)

The CLI was the primary means of interaction with most computer systems on com-

puter terminals in the mid-1960s, and continued to be used as the main interaction

interface throughout the 1970s and 1980s. The interface is usually implemented with

a command line shell, which is a program that accepts commands as text input and

converts commands into appropriate operating system functions. Meanwhile, hybrid

systems for algorithmic composition that combine multiple approaches led to new

possibilities for expression in live-coding [40]. These systems make use of two or

more languages and communicate through various bindings like Open Sound Control

or Websockets [47]. These languages are mostly domain specific hence they can be

accessed directly using a CLI and the associated compiler. The principal drawback

of such hybrid systems is that they may be very complicated, which proposes a high

10

learning curve for users and, therefore, hinders accessibility. However, hybrid sys-

tems can also offer novel ”powers” to composers and performers by bringing different

capabilities of different domains together.

In Siren, the command line mentality and the graphical ecosystem have a direct

connection, where the compiled patterns are stored in a pattern history. It allows user

to play along with the timers and intervene to the running patterns hence maintaining

the expressivity of live coding.

1.7 Musical User Interfaces

The design of new interfaces, as well as the interaction between forms of music engen-

der a compelling domain of research that links the practices of composition, perfor-

mance, and improvisation in the context of the computer. Crucially, current real-time

systems permit the composer to become the performer of their composition, even di-

rectly affecting the micro-structure of sound and affect in a very immediate and direct

way [18]. One important consideration about this creative domain is that the inter-

face shapes how the practitioner perceives and interacts with their art. In the formal

systems on which this domain is founded (e.g. the implementation of computer pro-

gramming languages and conventional practices of musical composition) it is precisely

the design of notation that defines the affordances, i.e. what actions and expressions

are possible. This notation system is provided by the programmer in the live coding

(see Sec. 1.6) while in any other conventional music system it is provided by some

kind of a ”discrete” (abstract but always discrete) grid system.

1.7.1 Musical Trackers

Trackers are a class of sequencer based on a concise text notation, edited using the

computer keyboard.The user interface of Siren is heavily influenced by the notion

of a musical tracker. The tracker user interface depicts notation as rows of discrete

musical events positioned in columnar channels. Each cell in a channel can hold a

note, parameter change, an effect toggle and other commands. Different patterns

or loops can have independent timelines, which can be organized into a sequential

master-list to form a complete composition. The earliest implementations of the

tracker concept were released for the AmigaOS platform in the late 80s and early

90s, in applications such as Ultimate Soundtracker [11] in 1987, NoiseTracker [32] in

1989, and Protracker [15] in 1990. Ultimate Soundtracker was the creation of Karsten

Obarski, who built it to relieve himself of the labor involved in coding computer

11

music by hand, with to tools available to him at the time. Obarski designed a tool

that graphically represents the four channels of sound on the Amiga’s sound chip

like a vertical piano roll. The piano roll metaphor elegantly matched the looping

structure common to nearly all music playback subroutines of the SID period [14].

Trackers are concluded as the most effective digital instrument in the findings of Nash

and Blackwell on Cognitive Dimensions of Notation[10] and will be evaluated more

profoundly in the next chapter.

12

Chapter 2

Siren: An Ecosystem for Musical
Patterns

This section presents Siren, a musical user interface envisioned as novel ecosystem for

pattern creation and sequencing.

First, the structure of the pattern creation and sequencing ecosystem that Siren

is based on, in terms of its data structures and underlying technologies, is described.

This is followed by an introduction to the principles that informed the design and

implementation of Siren. Subsequently, a report on the current implementation of

Siren user interface, which is intended to function as a software application for both

composition and live performance, concludes the section.

2.1 An Ecosystem for Pattern Creation and Se-

quencing

Siren is an ecosystem for pattern creation, live coding performance and algorithmic

composition.

Here, the concept of a “pattern” is borrowed the Tidal programming language

“for encoding musical patterns during improvised live coding performances” [39].

In essence, Tidal is a “pattern language” which is “embedded” in the Haskell pro-

gramming language (see [23]), which offers means to represent encodings of musical

patterns, a “library of pattern generators and combinators” and a scheduling system

for dispatching events.

Siren is based on a hierarchical structure of data, and a tracker-inspired user

interface, initially intending to build on the concepts and technology of Tidal. The

main idea in Siren is to support a hybrid interaction paradigm where the musical

building blocks of patterns are encoded in a textual programming language, while the

13

Figure 2.1: Siren, based on a hybrid visual approach that marries live-coding with a
tracker-inspired environment, is meant to serve as an ecosystem for musical patterns
and pattern-based compositions.

arranging and dispatching of patterns is done via a grid-based user interface inspired

by musical trackers (see [45]). In addition to pattern arrangement, the user interface in

Siren supports the specification of variations and transitions between patterns. Thus,

it can be considered an ecosystem for patterns and the representation of compositions

based on patterns, based on a visual approach to live performance with code, in a

familiar, tracker-inspired, grid-based environment (see Fig. 2.1).

In Siren, patterns denote functions that are stored in a pattern dictionary. These

pattern functions can be called from cells in the channels, and parameters that affect

the behavior of the pattern functions can be specified within cells for each call. While

the concepts that have inspired Siren are rooted in Tidal, patterns in Siren need not

be encoded in the Tidal language. The current version of Siren indeed supports the

use of Tidal and SuperCollider but the application of the underlying concept is not

limited to these languages, and the software can be extended to use other means of

encoding patterns.

In the tracker grid, per convention, each column represents a channel. Channels

in Siren are analogous to “tracks” in contemporary digital audio workstations. In the

current implementation, channels are specific to a certain pattern language—while

14

patterns encoded in different languages can be stored in the same pattern dictionary,

each channel may only call pattern functions written in a specific language that is

determined by the user upon the creation of the channel. In other words, each channel

runs an interpreter or compiler for a specific programming language as its back-end.

Each cell in a channel can be filled with a single function call, the definition of which

is found in the pattern dictionary. As such, cells in channels contain only the “call”

for a function, which, as is conventional in many programming languages, comprises

its name and the parameters to be passed to it.

A function that is defined in the pattern dictionary can be called from any cell

of any channel (provided it is written in a language that the channel’s interpreter

can execute). The execution happens thusly: A timer, or scheduling system, in Siren

scans each channel from top to bottom, triggering pattern functions in cells as they

are encountered. When a cell is triggered by the timer, Siren performs a look-up

in the pattern dictionary. Once the desired pattern is found in the dictionary, the

pattern is called by parsing its parameters and replacing them with the user input

provided in the calling cell. If the related pattern in the dictionary is reconstructed

correctly, the channel’s interpreter or compiler executes the function. For example,

in the case of Tidal channels, the Glasgow Haskell Compiler (GHC) [26] is used to

compile patterns to be parsed by Tidal, which can then be sent as an OSC [60, 59]

message to the SuperCollider software (which runs separately from Siren). For Super-

Collider channels, SCLang [52] is used for the communication between the interface

and SCsynth.

2.1.1 Hierarchical Composition

The main musical structure in Siren is the concept of the scene (see Sec. 2.3.2.1),

which acts as a top-level container and a framework for a composition. Each scene

could be thought of as a grid where each column is a ‘channel’ and each row denotes

time steps. A timer cycles through the rows, from top to bottom, and triggers the

content of each cell. Each scene has a pattern dictionary (Fig. 2.1) for the storage

of pattern function, their parameters and implementations (Fig. 2.6). Instances of

these pattern functions (Fig. 2.3) can be written into the grid to act as a function

call to patterns on trigger. The size of the grid is bound to the number of channels,

in other words, the number of columns in the grid. A user can create multiple scenes,

each of which has unique pattern functions and channels. A scene can be used for

sketchbook or while another one can represent a composition.

15

Figure 2.2: Example for an instance of a pattern function call.

Figure 2.3: Example for a pattern function located in the pattern dictionary. Siren

2.1.2 Patterns as Functions

The system is designed to treat stored patterns as functions. Patterns are referenced

as function calls (e.g. Fig. 2.2), which is written in one of the cells in the channel, and

the pattern function (e.g. Fig. 2.3), located in the pattern dictionary. The Pattern

function contains the optional parameters and the implementation of the instance.

Furthermore, instance has two components, function name and parameters that are

enclosed in grave accents in turn (`).

2.1.3 Features

Some of the most powerful aspects of Siren are the features that are added on top of

pattern manipulation mechanisms.

2.1.3.1 Parameters and Modulations

The pattern functions on Siren can contain any number of literal or random param-

eters.

A literal parameter is defined as any substring enclosed in grave accents (except

for ‘t‘, which is reserved for the temporal parameter (see Sec. 2.1.3.3). They can be

used in multiple places in the same instance, resulting in the ability to create complex

relationships and modulations, especially when used with mathematical expressions

(see Sec. 2.1.3.2). These parameters do not have a specific type, and any kind of

input that reconstructs a syntactically correct pattern is accepted.

Siren also introduces random parameters, which can be constrained within given

boundaries (e.g. |0,3|). This adds an extra element of randomness to the composi-

tions. This aspect of Siren is particularly interesting when used to create multi-level

16

randomness inside a pattern (e.g. irand(‘x‘) where x is the value of the random

parameter). Or in a more complex case,

d1 $ sound "foil0 gen0" #speed (scale 0.5 ‘x‘ $ rand)

It is possible to change boundaries of randomness in the speed parameter with gen-

erating another bounded random parameter.

2.1.3.2 Mathematical Expressions

The system allows use of a wide range of mathematical expressions that enhance the

computational and algorithmic aspect of pattern creation. These expressions can be

employed in any part of the implementation of pattern functions, and upon success-

ful evaluation, the expression is replaced with the final value. These expressions are

notated by surrounding the expression with ampersands (&). Integration with param-

eters, especially the constantly incremented temporal parameter (i.e. ‘t‘), opens up

new relationships for certain parts of the pattern, such as:

slow &log(‘t‘, 2)& $ sound "gen0" # delay "0.‘t‘"

Here, the duration of triggers is in relation with the logarithm of the speed of the

pattern. The expressions support numerical spaces, symbolic calculations, trigonom-

etry, vector and matrix arithmetic [27].

2.1.3.3 Polyrhythmic Timers and Temporal Parameter

Polyrhythmic events are possible through the implementation of dynamic channels.

Channels can have different numbers of steps, and by incrementing the number of

steps, events can be quickly created or extended. The tracker’s timer is represented

with a temporal parameter (‘t‘), which provides the current time to pattern functions

at the moment of execution (see Fig. 2.3).

d1 $ sound "gen0" #speed (scale 0.‘t‘ ‘x‘ $ sine)

In this case, the lower boundary of the randomness is determined by the timer’s

position in the channel.

17

2.1.3.4 Transitions

In Tidal, the functionality to specify transitions between patterns is provided. How-

ever, the transitions must be specified per pattern. Siren provides the feature to

specify a Tidal transition function for each channel only once, and have the transi-

tion function affect all of the patterns in the channel.

t1 (clutchIn 4) $ sound "gen1"

Alternatively, a Tidal pattern can be used as a single shot by utilizing the tran-

sition function named mortal which degrades the new pattern over the given time.

This allows triggering single shots and short patterns which can be used as filler or

transitive elements which is commonly used in the conventional trackers (see Sec.

1.7.1).

2.1.3.5 Global Modifiers

Another feature of Siren is that there are global transformations and parameters

which act on all of the channels, by either prepending transformation functions or

appending parameters to the patterns. Some examples of parameters, #speed -1

reverses current playback on all channels, #coarse 2 halves the sampling rate of

the selected channels, and so on. Within this module, there is also a sequencer

which randomly selects saved global parameters and applies them to the channels

with different time intervals. This module is designed for dramatic changes in the

musical output as the sequencer operates on its own temporal structure, it accepts

four different time intervals and applies a randomly selected function pairs to channels

and then waits for the given interval.

2.1.3.6 Pattern Roll

It’s possible for algorithms to create patterns where it could be too laborious to create

by hand. However, while these patterns can be interesting, they sometimes may lack

the precision required in a composition. In theory, it’s possible to ”tune” a pattern

to serve the desired purpose but it may require a profound change in the very core

of the algorithm; yet it is probable that it may not be as precise as it’s desired to

be. While in step sequencers, this precision is supplied by its step-wise nature where

each step is executed individually.

Pattern roll, also known as canvas or sub-sequencer (Fig. 2.4), is the second

sequencer of Siren and can be accessed from the modules menu (see Sec. 2.3.2). This

18

Figure 2.4: The pattern roll / sub-sequencer in Siren.

module is dedicated to recording instances of SuperDirt playback and it serves as

a visual tool to understand relationships between individual triggers. Algorithmic

patterns can then be modified using this piano-roll inspired module. This allows

specific refinements to the patterns where it could be too difficult establish the desired

effect with modifying the original pattern function.

The working principle of this sequencer is similar to the conventional step se-

quencers. It records the running patterns by listening for the playback messages

from SuperCollider OSC function. Upon parsing the messages, note and/or sample

numbers are placed in the data structure in which the vertical dimension lists unique

samples or notes, and the horizontal dimension denotes the time.

This module supports various edit operations to the recorded sequence, for ex-

ample, adding, deleting, or otherwise modifying notes. Each node in the timeline

consists of parameters emitted from SuperCollider (e.g. note, speed, coarse, etc).

It is possible to change the length of a sequence, as well as the tempo. The tempo

of the sequence can be synced to Tidal or TidaLink (a wrapper for Link connection

with Ableton Live and other Link compatible software) but it can also operate within

its own domain.

19

2.2 User Interface Design Principles

A number of design principles have guided the development of Siren. Its user interface

has been inspired by the previous works exploring the psychology of interacting with

notations in the field of programming. These works break different factors of the

software designer’s user experience into cognitive dimensions that help to paint a

broad picture of the user experience involved with editing code and crafting software

systems.

The first strand of ideas to inform the effort is the Cognitive Dimensions of Nota-

tions framework, originally introduced by Green for the purposes of investigating the

psychology of programming languages [20], and subsequently adapted towards music

notation systems and musical user interfaces [10, 9, 46, 44]. The second is the Design

Heuristics for Virtuosity proposed by Nash and Blackwell [12], which builds on the

cognitive dimensions framework and focuses on attributes that support virtuosity in

musical creation interfaces.

2.2.1 Cognitive Dimensions of Notations

In any attempt to interact with a musical system, there will be many inescapable lim-

itations. The interaction is always mediated through an abstract layer of notation,

e.g. a stave, sequencer or waveform metaphor. The process of sketching illustrates

how experimenting with notations can be used to support creativity. This encour-

ages greater optimism about the opportunities afforded by notation-mediated music

interaction (see [10]). In the words of Nash and Blackwell [46]:

Notations, and the interfaces used to edit them, may provide a description

of end product (be informative), define an exact specification of it (be

significant), have editing actions offer rapid feedback (be responsive), or be

inseparably and continuously coupled to the product itself (be live). This

theory demonstrates how non-realtime, notation-mediated interaction can

support focused, immersive, energetic, and intrinsically rewarding musical

experiences, and to what extent they are supported in the interfaces of

music production software. Users are shown to maintain liveness through

a rapid, iterative edit cycle that integrates audio and visual feedback.

Based on the above, a number of cognitive dimensions are summarized below,

based on the research in cognitive science, but shaped to serve as a practical analysis

and guiding tool for interaction designers, researchers, and programming language

20

Dimension Definition
Abstraction Types and availability of abstraction mechanisms

Hidden dependencies Important links between entities are not visible
Premature commitment Constraints on the order of doing things

Secondary notation Extra information in means other than formal syntax
Viscosity Resistance to change
Visibility Ability to view components easily
Closeness Mapping closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language

Error-proneness Notation invites mistakes
Hard mental operations High demand on cognitive resources
Progressive evaluation Work-to-date can be checked at any time

Provisionality Degree of commitment to actions or marks
Role-expressiveness The purpose of a component is readily inferred

Table 2.1: The Cognitive Dimensions from [21].

architects. “Each dimension is intended to describe a distinct factor related to the

usability of a particular notation. The goal is for each to relate to properties such as

granularity (considered on a continuous scale from high to low), orthogonality (inde-

pendence from other dimensions), polarity (not necessarily in terms of the ‘good’ and

‘bad,’ but characterizing ‘desirability’ in a continuous manner, for a given context),

and applicability (in terms of a broad relevance to any kind of notation)” [44]. From

Green and Blackwell [21], these dimensions, along with their definitions, are listed in

Table 2.1.

Building on these dimensions, Nash formulates a set of questions to guide user

interface designs in terms of more concrete design considerations [44]:

1. “How easy is it to view and find elements or parts of the music during editing?”

2. “How easy is it to compare elements within the music?”

3. “How explicit are the relationships between related elements in the notation?”

4. “When writing music, are there difficult things to work out in your head?”

5. “How easy is it to stop and check your progress during editing?”

6. “How concise is the notation? What is the balance between detail and overview?”

21

7. “Is it possible to sketch things out and play with ideas without being too precise

about the exact result?”

8. “How easy is it to make informal notes to capture ideas outside the formal rules

of the notation?”

9. “Where aspects of the notation mean similar things, is the similarity clear in

the way they appear?”

10. “Is it easy to go back and make changes to the music?”

11. “Is it easy to see what each part is for, in the overall format of the notation?”

12. “Do edits have to be performed in a prescribed order, requiring you to plan or

think ahead?”

13. “How easy is it to make annoying mistakes?”

14. “Does the notation match how you describe the music yourself?”

15. “How can the notation be customized, adapted, or used beyond its intended

use?”

16. “How easy is it to master the notation? Where is the respective threshold for

novices and ceiling for experts?”

These abstract cognitive dimensions and higher-level guiding questions have been

one component of the principles on which the design of the interface is based. It would

not be tractable to formulate one-to-one mappings between each feature or design

element in Siren and a specific cognitive dimension or guiding question, however,

below I can offer some comments on how exactly these concepts manifest in the final

design. More detail on the final visual and interaction design and implementation,

as well as how various features relate to the considerations enumerated above will be

the subject of the next section.

In Siren, the approach of the “pattern dictionary”(Fig. 2.6) plays a critical role

in editing musical compositions. In conventional step sequencers, step editing needs

to be done by directly accessing its dedicated menu or similarly referenced location

within the system. As opposed to that, in Siren there are no constraints as to where

the step-wise edit options needs be performed. This makes it easy to immediately

find musical elements and parts, which are already laid out in full view.

22

Siren strives to provide multiple ways for accomplishing the same musical result

using different structures and utilizing different pattern languages (some are more

accurate and more “loyal” than other with respect to an initial idea). Global modifiers

allows direct modifications to the running patterns which could be seen as a tie with

the notions of diffuseness and role expressiveness (Table 2.1).

The system allows musical ideas to be componentized and re-used with it’s hier-

archical structure (see Sec. 2.1.1), and the user interface provides methods for this

without adding further distractions to realizing musical ideas. The modularity of

musical expressions in Siren is an innate feature of the user interface paradigm and

layout system.

Siren leverages different abstractions in order to make good use of the visual

space. The essence of the notation is initially determined in the pattern language,

and its progression corresponds with a secondary timer structure. In terms of pro-

gression, these abstractions provides a great amount of freedom, as it’s possible to

apply modulations to the core parts of the patterns.

Sketching is one of the salient aspects of live coding practice – the code written

for a live performance could end up as a sketch after the performance, if not deleted,

and serve as the basis for a later composition. When beginning a composition, there

is no idea, and hence, no exactness. Findings in the initial experimentation stage lay

out the fundamental ideas, which are subsequently implemented in a more exacting

form in order to create a composition. In Siren, every scene can be utilized as a

sketchbook to incubate compositional ideas. As such, an initial sketch can be created

very quickly by either utilizing the pattern language (on the console) and using a

few channels. From this view, the compositional environment in Siren enables low-

viscosity workflows and secondary notations.

Global modifiers (Fig. 2.9) in Siren afford global modulations to the all active

patterns. Using this feature, implementing any ’informal’ decision which would af-

fect the selected patterns is trivial. As such, this enables modulations to parameter

values to be implemented using a selection of abstractions, without much premature

commitment, while enabling provisionality.

Since Siren is, in its essence, a layer of abstraction on text-based programming

environments, it is often very easy to go back and make changes to any scene or

pattern within seconds which would affect the musical output.

In terms of the notations utilized for each pattern, it is very easy to differenti-

ate the relationship between other patterns by their names and channel placements

23

(one possible limitation is that, within a channel, it may be difficult to identify two

instances of the same pattern that uses different parameters).

Edits can be performed in any order or any part of the composition can be the-

oretically created without listening to it. This ability allows for musical accidents,

which may ultimately turn out to be sonically enjoyable. On the other hand, in con-

ventional step sequencers, the edits need to be planned if the aim is to introduce,

for instance, some big breakdown in the middle of the composition – this requires

precise adjustments before and after the event. Comparatively, the scene concept in

Siren can be utilized to introduce a break or a verse. In a way, it is designed to allow

mistakes which may end up fueling inspiration.

Some limitations of the implementation include the absence of micro-tonality and

the lack of extensive customizability for the notation. In Siren, currently, the only

form of notation that can be used to express fine-grained ideas is by writing code.

The upside to this is that code can allow for highly sophisticated creative possibilities.

2.2.2 Design Heuristics for Virtuosity

The design of Siren is further informed by the Nash and Blackwell’s Design Heuristics

for Virtuosity [12], which has the “cognitive dimensions” framework at its foundation,

and focuses on foregrounding factors that entail “virtuosity” in the user interfaces for

live musical performance. These heuristics are:

1. Support learning, memorization and prediction (”recall rather than recogni-

tion”)

2. Support rapid feedback cycles and responsiveness

3. Minimize domain abstractions and metaphors

4. Support consistent output and focused, modeless input

5. Support informal interaction and secondary notation

These heuristics have been chosen due to the notion that rather than more con-

ventional approaches to usability and user experience design in human-computer in-

teraction, user interface designs for supporting musical creativity are better informed

by considering issues such as flow, liveness, and virtuosity that are of importance in

musical contexts [45, 46, 12].

24

In Siren, specifically, the principle of “recall rather than recognition (1)” and

support for “rapid feedback cycles and responsiveness (2)” have been considered as

guiding notions for the design of the user interface, its underlying concepts, and its

implementation. Moreover, “support for informal interaction and secondary notation

(5)” is allowed through a fusion of textual and visual approaches to programming

and composition. The fusion of these approaches is also visible in consideration of

the dimensionality of representations in terms of both their visual manifestation and

the mental models they encourage.

Textual programming can be considered one-dimensional because the relationships

are encoded in text, and thus, are represented based on adjacency. In visual program-

ming (for example, in Max/MSP [17] or PD [49]), putting objects on top of each other

is possible and the program still runs. However, since the encoding is compiled into

machine instructions regardless of its visual representation or its user interface, this

dimensionality only pertains to the experience of the user, not to the workings of the

process itself [41]. In textual programming however, these visual manifestations also

represent the workings of the compiler. In case of Siren, the introduction of a tempo-

ral structure, which is essentially textual but communicated as a visual component,

eases the cognitive load on the user. Furthermore, in Siren, the notion of supporting

“consistent output and focused, modeless input (4)” is addressed through the use of

a single view that exposes almost all of the elements of a composition.

While these four heuristics (1, 2, 4, 5) are well-supported in Siren, a conces-

sion that has to be made is that in terms of “minimizing domain abstractions and

metaphors (3)”, the design of Siren falls short in that it relies on an integration of

two separate domains of musical practice: live-coding and tracker-based composition.

However, still, Siren observes this heuristic by striving to follow already established

abstractions and metaphors. Therefore, the design ensures that the users who are

readily familiar with the live-coding and tracker environments can intuitively start

using the main concepts of the system without intricate knowledge about the inter-

face.

2.3 Siren: Implementation and Usage

Siren is a JavaScript-based application. The back-end, which interfaces with GHC1

and SuperCollider, is built using Node.js [16]. React.js library[24] was chosen to build

the user interface, due to its stability and active user community.

1Glasgow Haskell Compiler

25

Figure 2.5: The block diagram for Siren – The “front-end” explains the hierarchical
structure of Siren, and the communication between different components are shown
with arrows. Examples and explanations of the most prominent items are presented
with thin dashed boxes. Optional fields are shown with square brackets ([]).

Siren makes use of the TidalCycles (Tidal) domain-specific language which runs

embedded in Haskell. The Tidal language is designed for artists to generate and

manipulate “audible or visual patterns” by writing code, and accommodates both

compositional and live performance workflows. For writing musical patterns in Siren,

Tidal was a convenient choice for the reason that it treats compilation as an evaluation

of mathematical functions and avoids changing-state and mutable data. Therefore it

is highly practical for pattern programming.

The dictionary in Siren was implemented using Firebase [19], which provides a

NoSQL database. To highlight pattern code, Siren utilizes the open-source editor

CodeMirror. The editor affords various features such as syntax highlighting and

customized themes.

2.3.1 System Structure

The core of the system acts as a bridge between GHC and the Read-Eval-Print-

Loop (REPL) class of JavaScript. It is integrated with SuperColliderJS2 which is a

2https://crucialfelix.github.io/supercolliderjs/

26

JavaScript library for communicating with and controlling SuperCollider. The back-

end starts a terminal that communicates directly with the compiler, and compiles

the given Haskell code in the same way as contemporary text editors such as Atom,

Emacs and Vim do.

2.3.2 Modules

In Siren, it’s possible for a user to save four customs layouts with different modules.

For example, one layout can maximize the channels to take up the full screen, allowing

the user to focus on sequencing, or the console could be made to take up the full screen

for a user experience similar to a text editor, favored by programmers. These layouts

can be saved within the right-click menu. Navigating between the layouts is also

possible using convenient key-bindings.

2.3.2.1 Scenes

Scenes are the essential component of Siren. A scene serves as a container mechanism

for patterns and channels. A scene can be added, duplicated or deleted.

2.3.2.2 Channels

Channels can be added using the ‘Channel‘ module and consists of ‘type‘, ‘name‘,

‘step‘ and an optional ‘transition‘ parameters for initiation. Once a channel is added

to the sequencer, the parameters and layout can be adjusted dynamically. Patterns

can be looked up from the dictionary with their names and parameters. When a cell

is active, it triggers the pattern with appropriate name and applies parameters in an

ordered fashion. (see Sec. 2.1.3.1)

2.3.2.3 Patterns

Tidal patterns are stored in the ‘dictionary‘. This dictionary is unique for each scene

and interacts with the sequencer in terms of parameters and calls.

The syntax to be used for encoding patterns in each entry in the pattern dictionary

is determined by the channel definition, which determines the language in which

the pattern will be written. One additional feature that is specific to Siren is that

parameters can be provided instead of constants (see Sec. 2.1.3.1), and specifically

when Tidal is used as the pattern language, the channel names must be omitted.

Different types of parameters are accepted within the patterns as explained in Section

2.1.3.1.

27

Figure 2.6: The pattern dictionary in Siren.

2.3.2.4 Global Modifiers

The Global Modifiers module comprises 3 functional sections: an Execute section

where the main functionality of the module is controlled, a sequencer section to modify

temporal flow and the memory banks below which allow saved modifiers to be recalled.

In the Execute section there are two sections dedicated to appending and prepending

to the running patterns. ‘ctrl+enter ’ applies the modifiers to the patterns. These

sections can be saved and recalled by creating presets. ‘shift+click ’ clears the desired

slot and ‘alt+click ’ overwrites it. Pressing ‘Rec’ button saves the active modifiers.

These modifiers are applied to the patterns shown in the pattern history section (i.e.

active patterns). Channels that you want to modify can also be specified using the

‘channel’ section in the sub-menu. Writing ‘1 2’ will make the modifiers only affect

the first two channels, ‘0’ is a special case and means that modifiers will be applied

to all channels in the scene. The third section is dedicated to a sequencer to be

able to sequence saved global modifiers by specifying the time intervals of between

activation. One caveat regarding this module is that the design lacks visual clues

that would better communicate its functionaly, which will be implemented in future

work..

28

Figure 2.7: Channel setup of Siren.

Figure 2.8: A channel in Siren.

Figure 2.9: The Global Modifiers module.

2.3.2.5 Console

This module serves as a CLI (Command-Line Interface)(see Sec. 1.6.1) to GHC

and SuperCollider. The compiled patterns can be monitored in the Pattern History

module (see Sec. 2.3.2.6).

2.3.2.6 Pattern History

This module stores successfully compiled patterns and keeps track of the running

sequences. In the back-end, this module communicates with the Global Modifiers

(see Sec. 2.3.2.4) module to affect the running patterns.

2.3.3 Timer Structures

The creation of a pattern in Siren introduces a rhythmic element (see Sec. 1.4.1)

or a cycle within its temporal bounds and linearity. Sequencing the code allows the

29

Figure 2.10: The Console module.

Figure 2.11: The Pattern History module.

performer/composer to break out of linearity by modifying the cycle with different

variables and transitions while allowing events remain coherent in their single and

linear clock cycles. This mechanism can be exploited to expand a sense of repetition

(see Sec. 1.4.2) and structure on a larger scale.

Throughout the development process of Siren, experiments have been conducted

by implementing various timer structures. An early version, for example, had been

designed with unique timer controls for each channel. Although such a design allowed

for a great amount of freedom, the approach was not geared towards composition but

more orientated towards performative use of the software. Such an implementation

also led to technical challenges as the timers were operating on their own ‘clock’,

hence having no synchronization with the underlying pattern mechanism.

The current version of Siren implements a timer based on a concurrent tick mech-

anism, generated from Tidal or Link [1]. This allows events to be compiled at start

of time-stamped bars and provides a more precise timing mechanism.

30

Figure 2.12: An older prototype of Siren, with a poly-duration timer.

31

Chapter 3

Pieces and Music

In both the creation of Siren and the creation of music using Siren, I worked towards

creating structures in novel experimental forms. As I was building Siren, my aim was

to focus on automation and abstractions (see Sec. 1.3). There are many different

practices on how to approach abstractions when creating a piece or in a live perfor-

mance. How much of the software or the patterns should be represented in an higher

level of abstraction? How precise should the editing be?

Following a spirit of experimentation centered around answering these questions,

part science and part art, in which I hypothesize on chains of digital signal process-

ing and patterns that are possible to create with my set of tools. Then, I test my

hypotheses to see if they work, and where they lead creatively. My efforts in the

software design has led me to try many different methods, both technically and mu-

sically (see Sec. 2.2). My argument is that the method one chooses uses in his/her

creative process shapes the musical output, as it propagates in a path which is shaped

partly by imagination and by a different way of hearing, creating and experiencing

the sounds of the world. Moreover, my composition practice is self-taught over several

years of working with different sequencers and systems, fiddling with the menus and

notations, and analyzing and understanding their relations.

In this chapter, I will compare and analyze the methods I used in musical creation,

as well as examining the underlying pattern structures and features of Siren that

influenced the musical compositions. The mentioned techniques below can be heard

in example in the audio files provided under the ”Pattern Studies” folder.

3.1 Musical Flow

In this section, I will be discussing various aspects of the patterns and my approach

on them.

32

In Siren, the main focus is on spot-on debugging, in reference to just-in-time (or

edit-and-continue) debugging where a running program can be stopped and edited,

and can then continue execution without needing to restart. The frequency with

which I move between editing the pattern, listening to the output and filling up the

steps with variations of patterns has become a well-learnt, reflexive motor sequence,

almost an instinctive response to the creation of a new material. Playback, while

manually triggered, thus becomes closely coupled with editing, enables a form of

liveness in my process. This iterative technique enables me to quickly sketch and

experiment with different ideas. I approached patterns with an aim to use them

with different transformers, and seeing how flexible I could make them in terms of

being able to reuse them in different contexts. I concentrated on melody, harmony

counterpoint with the use of atonal percussive elements. It’s usually a conversation

with the system before settling down to a structure.

1. Program the primary patterns with using the Command-Line Interface.

2. Define a number of channels and pattern functions in the dictionary to be used

in the composition.

3. Compose patterns within the channels by modulating parameters their param-

eters. At each step, judge the quality of the compiled pattern.

4. Create several sections within a scene or inherit another scene from the current

one.

5. Improvise with the global modifiers while recording the scene.

Syncopation is a key aspect in the rhythmic patterns employed in my composi-

tions. Syncopation in Tidal patterns can be achieved using subdivisions. Variations

of these subdivisions create a dynamism on the rhythmic perception of patterns.

However, these variations may still sound static without any unanticipated events,

i.e. some level of randomness. This brings up the question of the extent to which

the repetition in music must be consciously perceivable for it to provide the desired

experience. This feeling can be modulated by using using step-wise modulations with

Siren timer. I’ve used algorithmic transformations extensively to redefine rhythmic

structure of the patterns to achieve various musical forms and variations. The most

notable modulations in this case being changes of the rhythmic density and sound

sources. Being able to modulate a programming language unquestionably expanded

my creative process by lifting the limitations on modulations and progressions. One of

33

the most interesting example is to be able to modulate the transformers that operates

within the same bounds.

d1 $ ‘x‘ 0.5 $ n "0 1" #s "gen0"

In the pattern above, the x parameter can be instantiated with different trans-

formers such as off or slow, allowing modulations to create phrases and variations.

Another method that I’ve found effective is sound source modulation. Combining

this with Siren’s features can result in complex textural development but it also may

cause a distraction as the number of samples in the pool increases. I found myself

suffering from that and wrote a script to set the samples with appropriate indexing

and folder structure. As an example, the folder which contained the ”snares” was

tagged with an index of ”1” and so on. The generated folders were named and indexed

as gen(i)

d1 $ sound "gen:‘x‘"

In this case, it’s possible to change the sound source by applying different integers

to the parameter x (see Sec. 2.1.3.1) to target different sound sources. While this

method has been useful for the initial phases, later I adopted to different procedures

and approaches on the samples such as synthesis and field recordings.

While these can be seen as the tools and tricks, I also approached this process with

an aim to map various philosophical thoughts on linear and cyclic time relations to

the musical patterns. Both metric changes and unanticipated transitions of patterns

establish a balance between the linear and cyclic (see Sec. 1.4). Polyrhythms and

otherwise ambiguous rhythms can thus be seen as presenting to the listener a bistable

percept [48] that affords rhythmic tension and embodied engagement. The N cycle is a

powerful constraint on metric structure and complexity of Tidal patterns. It’s possible

to represent of the same patterns in different ways without specifically considering

its metric structure. In my case, I always focused on building the metric structure

of a pattern to fit with different metric forms which may be introduced later in the

composition.

3.2 Commentary

In the track named 1sc34dl : I tried to map cyclical and linear time relations to the

interactions of the sounds. In this composition, I aimed to evoke the feeling of a

certain event being pushed further as the composition progresses, while other prior

34

Figure 3.1: Partial visualisation of the patterns used in the foilcut

events are being mashed together. It was generated by utilizing a several channels

with small number of steps. The global sequencer was set to silence the patterns after

the specified intervals.

In the track named foilcut : I aimed to create a sense of repetition with the use

of atonal percussive sounds, replacing snare sounds with sounds of the ice sheets

being hit by small stones and sound of claps echoing off a large room. The idea is

for the dense rhythmic triplet pattern to run under a noisy but melodic material.

Introduced materials are rhythmically and harmonically in contrast with the main

pattern hence functions as a filler in relation to it. The crunchy bass determines

the sections in the composition while momentarily changing the overall timbre and

degrading the percussive patterns. The relation between meters of the patterns is the

main aspect that determines the overall groove of the composition. Noisy hats and FM

sounds runs on four quarter-notes as opposed to main pattern’s meter which is being

modulated between three and five quarter-notes. There are also effects comb filters

and waveshapers being applied to patterns by using the global modifiers(See Fig. 2.9).

Going back and forth with these routines, it’s possible to create a composition while

also running the timer of the tracker interface. Even though channels in Siren can

be set to stop once they reach the last step, I often found myself sculpting algorithms

until I degrade them over time. I work from a bank of materials in a variety of

combinations. To some degree, most of the output actually resembles a codified track

which is being split up and re-constructed in the each session.

35

Chapter 4

Conclusions

This thesis described efforts to design a musical user interface envisioned as novel

ecosystem for pattern creation and sequencing. Throughout this journey, I’ve encoun-

tered various ideas and by analyzing some of them, I was able to make conscious

decisions how I would like to utilize programming in music. I also noticed that

Even though it is still at a highly experimental stage, Siren has gained signif-

icant attention from the live-coding community. I have been invited to perform

at Algorave’s “5th birthday online live stream” [3], and Siren. It has been subse-

quently featured in the TOPLAP website, “the home of live coding” [35]. For the

academic community I have published a conference paper at the 2017 International

Computer Music Conference (ICMC) titled Siren: Hierarchical Composition Interface

[25]. In addition to the conference proceedings, Siren has been featured in a recently

crowd-sourced book on electronic music instruments, Push Turn Move [8], beside its

predecessors such as SuperCollider, PureData, TidalCycles, and SonicPI. I have also

recently performed with Siren at the Pattern Studies Radio1.

From the perspective of my personal musical and creative journey, after developing

Siren, I can’t bring myself to use a traditional DAW for much more than mastering

and mixing anymore. The way I work with Siren feels much more efficient. I get

very excited about the idea of opening up programmatic descriptions of musical data

because it opens up so many opportunities for complexity and variation that are

difficult to explore otherwise, especially since this is something I’ve struggled with

ever since I started making music. I believe strongly that computer music is so

interesting because it removes so many limitations in regards to how a human can

create and organize sounds. But I also acknowledge that I’m the most productive

and creative when I’m working within a system with very well defined boundaries

1patternstudiesradio.com

36

http://patternstudiesradio.com

and limitations. Artists imposing arbitrary limitations on themselves to encourage

creativity is a common practice in a slew of creative domains. There is probably a

middle ground here, where the most productive path to this flavor of creativity is the

artists empowering themselves with the knowledge and tools to imagine and create

their own closed systems for musical/artistic experimentation. As such, in Siren, the

aim has been to achieve a balance in the design of a musical environment in terms of

constraints and possibilities. From my own experience as a composer and performer

using the software, I have been able to see that this has been achieved.

37

Chapter 5

Future Work

There are a number of features planned to be added on top of the current structure

of Siren. To sum up those features, one of them is an audio mixer implementation to

Siren to extend it’s connections with SuperCollider, possibly with a Quark extension.

Along with interface-level improvements and the visual editor, I am preparing

another conference paper for NIME 2018 in collaboration with a media artist, Mert

Toka. On top of editing the pattern within the Pattern Roll(see Sec. 2.1.3.6), it will

also be possible to save it as a phrase to be used in the tracker interface (see Sec.

2.8). These sequences will be stored with in a phrase dictionary and triggered within

the tracker interface by calling the appropriate sequence names. I think that it would

be interesting to have a feedback system between patterns where it can also be used

as an ’overdubbing’ mechanism on top of the algorithmic patterns.

In the other hand, I think that the way forward to develop a competitive hybrid

software is through coding it in a native language to be able to fully utilize computer’s

power. More robust environments such as QT1 or JUCE2 would be more suitable

for Siren as Javascript runs on a single thread. It is also possible to develop an

integrated pattern language and a sound engine which is tailored to be used with this

language. It would also be much more intuitive for non-programmers as the initial

setup requirements are reduced. In its current state, a tool like Electron3 would allow

for an easier end-user installation process by packaging the system into a standalone

application. In theory, it is also possible to support any number of pattern languages

within the Siren interface, such as FoxDot4.

1qt.io
2juce.com
3electronjs.org
4foxdot.org

38

https://www.qt.io/
https://juce.com/
https://electronjs.org/
http://foxdot.org/

My vision with Siren is to create a DAW where the whole context is just a set of

scripts on top of some low level code for building out UIs and generating/manipulating

audio. Concretely, a more interactive user interface that makes the modules into

selectable and manipulable objects could also benefit the experience.

39

References

[1] Ableton. Link. https://github.com/Ableton/link, 2016.

[2] Julian Rohrhuber Alex McLean. Superdirt.

https://github.com/musikinformatik/SuperDirt, 2015.

[3] Algorave. Algorave 5th birthday stream.

https://www.youtube.com/watch?v=g2dINLvLr1g&t=20. Accessed: 2017-

12-19.

[4] Teresa Amabile. Componential theory of creativity. Harvard Business School

Boston, MA, 2012.

[5] HornerImran Amrani. Run the code: is algorave the future of dance music? The

Guardian, Oct 2017.

[6] Renick Bell. An approach to live algorithmic composition using conductive.

Proceedings of LAC 2013, 2013.

[7] Renick Bell. Experimenting with a generalized rhythmic density function for live

coding. In Linux Audio Conference, 2014.

[8] Kim Bjorn. Push turn move. https://www.pushturnmove.com/. Accessed: 2017-

12-19.

[9] Alan Blackwell and Nick Collins. The programming language as a musical in-

strument. Proceedings of PPIG05 (Psychology of Programming Interest Group),

3:284–289, 2005.

[10] Alan F Blackwell, Thomas RG Green, and Douglas JE Nunn. Cognitive dimen-

sions and musical notation systems. In Proceedings of International Computer

Music Conference, Berlin, 2000.

40

[11] Karen Collins. Game sound: an introduction to the history, theory, and practice

of video game music and sound design. Mit Press, 2008.

[12] Karen Collins, Bill Kapralos, Holly Tessler, Chris Nash, and Alan F. Blackwell.

Flow of creative interaction with digital music notations.

[13] Edsger Wybe Dijkstra. Notes on structured programming, 1970.

[14] Kevin Driscoll and Joshua Diaz. Endless loop: A brief history of chiptunes.

Transformative Works and Cultures, 2, 2009.

[15] eightbitbubsy. ProTracker. https://sourceforge.net/projects/protracker/, 2017.

Accessed: 2017-03-30.

[16] Node.js Foundation. Node.js. http://nodejs.org/, 2018. Accessed: 2017-03-30.

[17] francois. A brief history of max. http://freesoftware.ircam.fr/article.php3?id article=5,

2009. Accessed: 2017-11-27.

[18] Anastasia Georgaki. The grain of xenakistechnological thought in the computer

music research of our days. In Definitive Proceedings of the International Sym-

posium Iannis Xenakis, 2005.

[19] Google. Firebase. https://firebase.google.com/. Accessed: 2017-12-19.

[20] T. R. G. Green and M. Petre. Usability analysis of visual programming envi-

ronments: a ‘cognitive dimensions’ framework. JOURNAL OF VISUAL LAN-

GUAGES AND COMPUTING, 7:131–174, 1996.

[21] Thomas Green and Alan Blackwell. Cognitive dimensions of information arte-

facts: a tutorial. In BCS HCI Conference, volume 98, 1998.

[22] Andrew Horner and David E Goldberg. Genetic algorithms and computer-

assisted music composition. Urbana, 51(61801):437–441, 1991.

[23] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history

of haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN

conference on History of programming languages, pages 12–1. ACM, 2007.

[24] Facebook Inc. React. https://facebook.github.io/react/, 2018. Accessed: 2017-

03-30.

41

[25] Can Ince and Mert Toka. Siren: Hierarchical composition interface. In Proceed-

ings of International Computer Music Conference, Shanghai, 2017.

[26] SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip Wadler.

The glasgow haskell compiler: a technical overview. In Proc. UK Joint Frame-

work for Information Technology (JFIT) Technical Conference, volume 93, 1993.

[27] J. Jong. Math.js. https://github.com/josdejong/mathjs, 2018. Accessed: 2017-

03-20.

[28] D Knuth. The art of computer programming 1: Fundamental algorithms 2:

Seminumerical algorithms 3: Sorting and searching. MA: Addison-Wesley,

page 30, 1968.

[29] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),

24(2):131–183, 1992.

[30] Henri Lefebvre. Rhythmanalysis: Space, time and everyday life. A&C Black,

2004.

[31] Justin London. Hearing in time: Psychological aspects of musical meter. Oxford

University Press, 2012.

[32] mandarin. NoiseTracker V2.0 by Mahoney & Kaktus.

http://www.pouet.net/prod.php?which=13360, 2018. Accessed: 2017-03-

30.

[33] James McCartney. Supercollider: a new real time synthesis language. In Proc.

International Computer Music Conference (ICMC96), 1996.

[34] James McCartney. Rethinking the computer music language: Supercollider.

Computer Music Journal, 26(4):61–68, 2002.

[35] Alex McLean. Toplap. https://toplap.org/. Accessed: 2017-12-19.

[36] Alex McLean. The textural x. Proceedings of xCoAx2013: Computation Com-

munication Aesthetics and X, pages 81–88, 2013.

[37] Alex McLean. Making programming languages to dance to: live coding with

tidal. In Proceedings of the 2nd ACM SIGPLAN international workshop on

Functional art, music, modeling & design, pages 63–70. ACM, 2014.

42

[38] Alex Mclean and Geraint Wiggins. Bricolage programming in the creative arts.

22nd Psychology of Programming Interest Group, 12 2010.

[39] Alex McLean and Geraint Wiggins. Tidal–pattern language for the live coding

of music. In Proceedings of the 7th sound and music computing conference, 2010.

[40] Alex McLean and Geraint A Wiggins. Texture: Visual notation for live coding

of pattern. In ICMC, 2011.

[41] Christopher Alex McLean et al. Artist-programmers and programming languages

for the arts. PhD thesis, Goldsmiths, University of London, 2011.

[42] John S Mill. A system of logic ratiocinative and inductive london. Robson, JM

(Hg.), Collected Works of John Stuart Mill, 7, 1843.

[43] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,

38(11):39–41, November 1995.

[44] Chris Nash. The cognitive dimensions of music notations. In The Cognitive

Dimensions of Music Notations, 2015.

[45] Chris Nash and Alan Blackwell. Tracking virtuosity and flow in computer music.

In ICMC, 2011.

[46] Chris Nash and Alan Blackwell. Liveness and flow in notation use. In NIME,

2012.

[47] George Papadopoulos and Geraint Wiggins. Ai methods for algorithmic compo-

sition: A survey, a critical view and future prospects. In AISB Symposium on

Musical Creativity, pages 110–117. Edinburgh, UK, 1999.

[48] Jeff Pressing. Black atlantic rhythm: Its computational and transcultural foun-

dations. Music Perception: An Interdisciplinary Journal, 19(3):285–310, 2002.

[49] Miller Puckette et al. Pure data: another integrated computer music environ-

ment. Proceedings of the second intercollege computer music concerts, pages

37–41, 1996.

[50] Miller Puckette, David Zicarelli, et al. Max/msp. Cycling, 74:1990–2006, 1990.

[51] Claude Rostand. Metastasis. lannis Xenakis: Metastasis, Pithoprakta, Eonta,

recording (New York, NY: Vanguard Recoding Society), 1967.

43

[52] Chris Sattinger. Supercolliderjs. https://crucialfelix.github.io/supercolliderjs/.

[53] Mary Simoni. Algorithmic composition: a gentle introduction to music compo-

sition using common lisp and common music. SPO Scholarly Monograph Series,

2003.

[54] C.J. Sippl and C.P. Sippl. Computer dictionary and handbook. H. W. Sams,

1972.

[55] L Spiegel. Distinguishing random, algorithmic, and intelligent music. Internet:

http://retiary. org/ls/writings/alg comp ltr to cem. html, 1989.

[56] Paul Tingen. Autechre. https://www.soundonsound.com/people/autechre, 2004.

[57] Raymond Turner and Amnon H Eden. The philosophy of computer science:

introduction to the special issue, 2007.

[58] Peter Worth and Susan Stepney. Growing music: musical interpretations of

l-systems. In Workshops on Applications of Evolutionary Computation, pages

545–550. Springer, 2005.

[59] Matthew Wright. Open sound control: an enabling technology for musical net-

working. Organised Sound, 10(3):193–200, 2005.

[60] Matthew Wright, Adrian Freed, et al. Open soundcontrol: A new protocol for

communicating with sound synthesizers. In ICMC, 1997.

[61] I. Xenakis. Formalized Music: Thought and Mathematics in Composition. Har-

monologia series. Pendragon Press, 1992.

44

	List of Submitted Materials
	List of Figures
	List of Tables
	Context
	Aims
	Algorithms
	Abstractions
	Time
	Rhythm
	Repetition

	Pattern Programming
	TidalCycles

	Creative Coding / Live Coding
	Command-line Interface (CLI)

	Musical User Interfaces
	Musical Trackers

	Siren: An Ecosystem for Musical Patterns
	An Ecosystem for Pattern Creation and Sequencing
	Hierarchical Composition
	Patterns as Functions
	Features
	Parameters and Modulations
	Mathematical Expressions
	Polyrhythmic Timers and Temporal Parameter
	Transitions
	Global Modifiers
	Pattern Roll

	User Interface Design Principles
	Cognitive Dimensions of Notations
	Design Heuristics for Virtuosity

	Siren: Implementation and Usage
	System Structure
	Modules
	Scenes
	Channels
	Patterns
	Global Modifiers
	Console
	Pattern History

	Timer Structures

	Pieces and Music
	Musical Flow
	Commentary

	Conclusions
	Future Work
	References

