
!

ENS 491-2 Graduation Project

Project #55

Developing an Advanced Sampling System

Submitted in fulfillment of the requirements for the degree of

Bachelor of Science

Can Ince

14241

Supervised by

Müjdat Çetin

November 17, 2015

Faculty of Engineering and Natural Sciences

Sabanci University

! Developing an Advanced Sampling System

!

!

2!

 Contents

1.! Introduction……………………………………………………….3

2.! Overview of Patch…………………………………………...........4

3.! Modules……………….…………………………………………...6

4.! Conclusion………..……………….……………………………...16

5.! References………………………………………………………...17

! Developing an Advanced Sampling System

!

!

3!

Abstract

This project aims to create a sampling system which can be embedded into several applications as
a sample playback engine and can be used as a live sampling software for live performances. The
project grows within the scope of filter and processor design.

I. Introduction

With the power of the contemporary CPUs and frameworks, the new media has evolved into a
modular canvas. The term “New Media” consists of the mutual correlation of science and art. This
correlation gave birth to an era-specific approaches to music and changed it’s origins from classical
to algorithmic. While this continuous evolution has accelerated in the past couple of years, the
compatibility issues has not yet been quite solved.

The New Music has been built onto three main fields; Audio Signal Processing, Embeddable
Systems and algorithmic compositions. Modern Digital Audio Workstations (DAW) offer an
extensive music production environment with countless plug-ins that expand the variety of sounds
and the possibilities of various manipulations but the limitations of the modern workstations can
not be overseen. Given the endless possibilities of creating tools for music, the most challenging
part is to understand the concepts lying below such as processors, modulations, envelopes and the
modular way of thinking to combine those modules. In the course of my project I have decided to
design a system which will be able to manipulate an audio file in a way that old school sampler
and synthesizer does. There are many different unique approaches to playback an audio file but
what is missing is the compatibility and the completeness of those approaches in different areas.

The main focus of the project is based on gen object since it works at single sample level therefore
it allows more precise manipulations on signal without having to code them in C. All of the digital
signal processing modules were coded in gen and tried several processor designs and combinations
through out the project.

! Developing an Advanced Sampling System

!

!

4!

II. Overview of Patch
I. Summary of Max/MSP Patch

To get an insight about the processor design I began with an MSP patch. At first, the patch included 8
different filter type, fine-tuning, amplitude and filter envelopes, delay, reverb and several other sample
manipulation tools. The individual modules parse the required information such as MIDI notes, ADSR
values and control change messages from the various list objects and routes them accordingly. The
output of the individual modules gets combined in mainsamp sub-patcher and forms the final list object
with the given information. After the generation of the specified sample output the signal goes into the
processors and filter. With the polyphony, the same sample can be played back with different
frequencies eventually effecting the pitch of the sample. However, it was not doable sequential way
and it required a dynamic way of programming. For each input the whole system is re-created and
evaluated in it’s own scope.

Figure 1 : Overview of Patch

! Developing an Advanced Sampling System

!

!

5!

II. Gen object in Max/MSP

To make the sampler more effective and also to extend my knowledge on processors, I studied Max’s DSP
object gen~. It brings a new layer to Max/MSP software. The main difference of ~gen is that concise text
based expression language can be used rather than coding in GLSL. It can run on GPU therefore making
the algorithms run at it’s full performance with the capability of parallel programming. Gen runs on its
own runtime and contains several objects that only works in its scope. As can be seen in figure 2, ~gen
works on sample level and capable of interpolating two signals. I built several delay and reverb units
inside the ~gen object and used those derivations to come up with a solution to de-attach the DSP
modules from runtime. History operator allows feedback in the gen patcher through the insertion of
single-sample delay hence it’s commonly used in feedback delay networks. Delay operator in gen delays
the signal by a certain amount of time specified by sample.

 Figure 2: DSP in Gen

! Developing an Advanced Sampling System

!

!

6!

III. Modules

I. Delay
As seen in figure 3, inputs of the system are the individual audio channels and individual period
frequencies, each frequency controls the delay ratio within it’s channel therefore creating a sonic
disjointedness. This effect could be interpreted as decreasing the repeated sample space. This change in
delay time is referred to time-delay damping theory, damping parameters are mixed with delayed
sample and stored in history operator for the next iteration. These damping parameters controls the
wideness of the sonic spectrum.

The pfft~ object is designed to simplify spectral audio processing using the Fast Fourier Transform
(FFT). In addition to performing the FFT and the Inverse Fast Fourier Transform (IFFT), pfft~ manages
the necessary signal windowing, overlapping and adding needed to create a real-time Short Term

Figure 3: Feedback Delay Network

! Developing an Advanced Sampling System

!

!

7!

Fourier Transform (STFT) analysis/re-synthesis system. Spectral delay is based on splitting the signal
into a large number of frequency bands which can then be delayed individually as can be seen in figure4.

 This method is effective, but it has several disadvantages. The FFT process is fairly computationally
expensive, and so this method can place a heavy load on the computer’s processor if real-time operation
is needed. Also, FFTs introduce an inherent latency based on the number of frequency bands desired.
This is undesirable in real-time applications where responsiveness is important.

The FFT method can also lead to quantization of the delay times allowed for each frequency, depending
on how the effect is implemented.

Figure 4: Spectral Delay

! Developing an Advanced Sampling System

!

!

8!

Figure 6: Spectogram of delayed sample

Figure 5 : Spectogram of sample

! Developing an Advanced Sampling System

!

!

9!

II. Reverb

Reverberation consists of two different approaches, algorithmic model uses an algorithmic model and
convolution model uses the impulse response of a particular place. Algorithmic reverb is not based on
any physical model therefore it can be used in an unusual way such as as an instrument instead of an
effect processor. Reverb lengthens sound and shapes timbre. It can be used to smooth attack and
sustaining some overtones more than others. It gives a strong sense of location of the sonic image of
source’s space and the listener's position. Reverb parameters can be stated as: echo density, coloration,
smooth exponential decay, clarity, sparse early reverb, dense late reverb, variable diffusion on early
reflections, control of pulsing or repetition. Most of academic researches has been done on creating a
good artificial reverb with wide range parameterization. There is a generalized representation of
reverberation structures, where you have separate matrices for the inputs, the feedback between delays
and the outputs. With this representation any reverberator structure can be expressed. These approaches
commonly referred as feedback delay networks. Feedback delay network is a term that describes parallel
connected delay lines, connected by a specified kernel function and the output of the operation is fed
back into the inputs.

Figure 7: Reverb in Gen

! Developing an Advanced Sampling System

!

!

10!

However the complexity issues may arise with this operation, NxN matrix will take up to NN

computations in worst case and this will take N * log2N to create matrix that is fully diffusive. In this case
using an all-pass feedback delay network with fever branches but more density in each branch was a
good idea. The designed model has 8 parallel comb filters connected to 4 sequential all-pass filter.

This model has introduced by Manfred Schroeder, 4 comb filters in parallel and followed by chain of all-
pass filters. James Moorer all-pass combs in parallel with low-pass filter to each one, progression of
darkness gets darker as the time goes by with low-pass filters so it gave a sense of a real room with
notion of early reflections.

FIGURE 8: COMB FILTER

! Developing an Advanced Sampling System

!

!

11!

Figure 10: Spectogram of processed sample

Figure 9: Spectogram of the sample

! Developing an Advanced Sampling System

!

!

12!

 III. COMPRESSOR

Compressors are widely used to smooth an incoming signal across a desired range of samples. Each time
an incoming value changes, it begins a linear ramp to reach this value. To balance the output signal and
get rid of glitch peaks that may occur I used a compressor that is built in gen. The ceiling, lookahead,
gain and release are the parameters that effect the nature of the compression. Release sets how long the
limiter will keep working after the signal goes below the threshold. Ceiling sets the maximum value (dB)
at which the limiter will limit the signal. Lookahead sets the amount of time in milliseconds that the
computer uses to look ahead and the gain parameter controls the input gain. The tone generator might
produce a steady low-pitched drone, it’s expected that with stable ceiling and release values the peaks
will disappear since the compressor is turning the entire signal down.

Figure 11: Scope of compressor

Configurations of Figure 11,

•! 20 dB gain
•! 28.3 sample lookahead,
•! 429 ms release
•! 30 db ceiling/threshold parameter.

! Developing an Advanced Sampling System

!

!

13!

IV. Moog Ladder Filter
The analog 'feel' of the Voltage-Controlled Filters (VCF) are based on nonlinearity which produce a
distortion that adds a specific and musically-pleasing “warmth” to the timbre of the sound. Developed
by Moog and used in early analog Moog synthesizers of 1960s. Moog's ladder filter is considered to be
an important paradigm in real-time sound processing.

"Not only has it been recognized as a milestone in the history of electronic music, but in an attempt to
reformulate the challenging solutions in its architecture in the digital domain, the various discrete-time
models that were proposed in the last fifteen years to simulate the VCF have given rise to a curious
thread of interesting realizations." (Valimaki).

Figure 12 :Moog Ladder Filter

! Developing an Advanced Sampling System

!

!

14!

Moog Ladder Filter is an analog resonant low-pass filter design consisting of four stage ladder each
composed of a differential pair of NPN transistors and a capacitor.

Figure 13: The Moog VCF

The overall transfer function with feedback as determined by Smith and Stilson is shown in figure 14.

Figure 14: Transfer function of the filter.

Moog Ladder filter has two main features that needs to be converted to the digital domain to fully emulate
the effects which tends to be a paradigm in virtual analog synthesis.

i)! Nonlinear behaviour
ii)! Two-dimensional continuous control, exerted by both parameter changes and the control signals.

! Developing an Advanced Sampling System

!

!

15!

Deriving from the previous researches made on digitizing the VCF, it’s concluded that the most
successful attempt was designed by Huovilainen who introduced a non-linear solution. The
differential equation was constituted by analysis of the analog circuitry and the single state transfer
function was constructed using Euler’s method. The key of emulating the filter lies within feeding
the input with an inverted output to produce resonance per iteration, so the implementation will
be based on this hypothetical solution.

Figure 15: Single Stage of the Moog Ladder

Figure 16: Differential equation for a single stage

Figure 17: A simplified version of non-linear digital Moog filter

! Developing an Advanced Sampling System

!

!

16!

IV. Conclusion
A 16x8 hardware matrix implementation is still in progress, however the patch can be created
dynamically and iteration in each layer is possible. CPU issues may occur during the allocation of
individual samplers however the overall parameters will be controlled in a single patch therefore
a possible chaining operations can be made on effective parameters. Output of the sampler can be
recorded live and can be exported as an aiff or wav file. Moog ladder filter is implemented within
the filter patch and embedded into the filter module instead of biquad.. The overall frequency
response of the system can be seen in figure 18. As it can be observed, effect modules has an high
impact on the overall sample, it’s capable of producing rich soundscapes and different acoustic
relations. The combination of parameters both within the delay and reverb changes the
characteristics of sound dramatically.

 Figure 18: Spectogram of the output

! Developing an Advanced Sampling System

!

!

17!

V. References

[1] Alessandro Cipriani, Maurizio Giri. Electronic Music and Sound Design - Theory and Practice with
Max and Msp Volume 1 (Second Edition) - Contemponet; Upd. for Max 6 edition (June 12, 2013)

 [2] Alan V. Oppenheim Discrete-Time Signal Processing (3rd Edition) - (Prentice Hall

Signal Processing - Prentice Hall; 3 edition (August 28, 2009)

 [3] Eric Lyon, David Zicarelli Designing Audio Objects for Max/MSP and Pd

(Computer Music and Digital Audio Series) - A-R Editions; Pap/Cdr edition (October 2012)

 [4] Max7 documentation

 [5] Monome Community, http://llllllll.co/

[6] R. Moog, “A voltage-controlled low-pass high-pass filter for audio signal processing,” in
Proceedings of the 17th AES Convention, New York, NY, USA, October 1965, preprint 413.

[7] J. Pakarinen, V. Valimaki, Vlimki, F. Fontana, V. Lazzarini, and J. S. Abel, "Recent advances in
real- time musical effects, synthesis, and virtual analog models,"EURASIP J. Adv. Signal Process.,
2011, article ID 940784.

[8] A. Huovilainen, “Nonlinear digital implementation of the Moog ladder filter,” in Proceedings of
the International Conference on Digital Audio Effects, Naples, Italy, October 2004.

[9] Elif Ecem Ozkan, Sabanci University senior design project report

#583 Design and Implementation of a Virtual Studio Technology Software Interface Progress
Report-II, pp. 7-8, March/2015.

[10] DAFX: Digital Audio Effects by Udo Zölzer Wiley; 2 edition (April 18, 2011)

[11] https://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberators.html

[12] http://dspwiki.com/index.php?title=Reverberation

! Developing an Advanced Sampling System

!

!

18!

[13]Gen Export of Reverb Module

#include "cVerb.h"

namespace cVerb {

// global noise generator

Noise noise;

static const int GENLIB_LOOPCOUNT_BAIL = 100000;

// The State struct contains all the state and procedures for the gendsp
kernel

typedef struct State {

 CommonState __commonstate;

 Delay m_delay_24;

 Delay m_delay_15;

 Delay m_delay_13;

 Delay m_delay_23;

 Delay m_delay_9;

 Delay m_delay_17;

 Delay m_delay_21;

 Delay m_delay_19;

 Delay m_delay_22;

 Delay m_delay_7;

 Delay m_delay_11;

! Developing an Advanced Sampling System

!

!

19!

 Delay m_delay_5;

 int vectorsize;

 int __exception;

 t_sample m_spread_1;

 t_sample m_history_20;

 t_sample samplerate;

 t_sample m_history_18;

 t_sample m_damp_2;

 t_sample m_history_16;

 t_sample m_fb_3;

 t_sample m_history_10;

 t_sample m_history_8;

 t_sample m_history_12;

 t_sample m_history_14;

 t_sample m_fb_4;

 t_sample m_history_6;

 // re-initialize all member variables;

 inline void reset(t_param __sr, int __vs) {

 __exception = 0;

 vectorsize = __vs;

 samplerate = __sr;

 m_spread_1 = 0;

 m_damp_2 = 0.5;

 m_fb_3 = 0.5;

 m_fb_4 = 0.9;

 m_delay_5.reset("m_delay_5", 2000);

 m_history_6 = 0;

 m_delay_7.reset("m_delay_7", 2000);

 m_history_8 = 0;

! Developing an Advanced Sampling System

!

!

20!

 m_delay_9.reset("m_delay_9", 2000);

 m_history_10 = 0;

 m_delay_11.reset("m_delay_11", 2000);

 m_history_12 = 0;

 m_delay_13.reset("m_delay_13", 2000);

 m_history_14 = 0;

 m_delay_15.reset("m_delay_15", 2000);

 m_history_16 = 0;

 m_delay_17.reset("m_delay_17", 2000);

 m_history_18 = 0;

 m_delay_19.reset("m_delay_19", 2000);

 m_history_20 = 0;

 m_delay_21.reset("m_delay_21", 2000);

 m_delay_22.reset("m_delay_22", 2000);

 m_delay_23.reset("m_delay_23", 2000);

 m_delay_24.reset("m_delay_24", 2000);

 genlib_reset_complete(this);

 };

 // the signal processing routine;

 inline int perform(t_sample ** __ins, t_sample ** __outs, int __n)
{

 vectorsize = __n;

 const t_sample * __in1 = __ins[0];

 t_sample * __out1 = __outs[0];

 if (__exception) {

 return __exception;

 } else if (((__in1 == 0) || (__out1 == 0))) {

 __exception = GENLIB_ERR_NULL_BUFFER;

! Developing an Advanced Sampling System

!

!

21!

 return __exception;

 };

 t_sample mul_106 = (m_fb_3 * 0.5);

 t_sample add_92 = (225 + m_spread_1);

 t_sample add_94 = (341 + m_spread_1);

 t_sample add_104 = (441 + m_spread_1);

 t_sample add_90 = (556 + m_spread_1);

 t_sample damp_60 = m_damp_2;

 t_sample damp_59 = damp_60;

 t_sample damp_61 = damp_60;

 t_sample damp_62 = damp_60;

 t_sample damp_63 = damp_60;

 t_sample damp_64 = damp_60;

 t_sample damp_65 = damp_60;

 t_sample damp_66 = damp_60;

 t_sample add_97 = (1257 + m_spread_1);

 t_sample rsub_67 = (1 - damp_60);

 t_sample add_96 = (1513 + m_spread_1);

 t_sample rsub_117 = (1 - damp_59);

 t_sample add_98 = (1129 + m_spread_1);

 t_sample rsub_123 = (1 - damp_61);

 t_sample add_99 = (1065 + m_spread_1);

 t_sample rsub_140 = (1 - damp_62);

 t_sample add_100 = (1033 + m_spread_1);

 t_sample rsub_152 = (1 - damp_63);

 t_sample add_101 = (1017 + m_spread_1);

 t_sample rsub_162 = (1 - damp_64);

 t_sample add_102 = (1009 + m_spread_1);

! Developing an Advanced Sampling System

!

!

22!

 t_sample rsub_171 = (1 - damp_65);

 t_sample add_103 = (1001 + m_spread_1);

 t_sample rsub_183 = (1 - damp_66);

 // the main sample loop;

 while ((__n--)) {

 const t_sample in1 = (*(__in1++));

 t_sample mul_108 = (in1 * 0.015);

 t_sample tap_74 = m_delay_5.read_linear(add_97);

 t_sample gen_83 = tap_74;

 t_sample mul_72 = (tap_74 * damp_60);

 t_sample mul_70 = (m_history_6 * rsub_67);

 t_sample add_71 = (mul_72 + mul_70);

 t_sample mul_68 = (add_71 * m_fb_4);

 t_sample add_75 = (mul_108 + mul_68);

 t_sample history_69_next_76 = add_71;

 t_sample tap_114 = m_delay_7.read_linear(add_96);

 t_sample gen_107 = tap_114;

 t_sample mul_115 = (tap_114 * damp_59);

 t_sample mul_116 = (m_history_8 * rsub_117);

 t_sample add_118 = (mul_115 + mul_116);

 t_sample mul_112 = (add_118 * m_fb_4);

 t_sample add_111 = (mul_108 + mul_112);

 t_sample history_69_next_110 = add_118;

 t_sample tap_128 = m_delay_9.read_linear(add_98);

 t_sample gen_82 = tap_128;

 t_sample mul_126 = (tap_128 * damp_61);

 t_sample mul_127 = (m_history_10 * rsub_123);

 t_sample add_129 = (mul_126 + mul_127);

 t_sample mul_125 = (add_129 * m_fb_4);

! Developing an Advanced Sampling System

!

!

23!

 t_sample add_124 = (mul_108 + mul_125);

 t_sample history_69_next_122 = add_129;

 t_sample tap_136 = m_delay_11.read_linear(add_99);

 t_sample gen_81 = tap_136;

 t_sample mul_134 = (tap_136 * damp_62);

 t_sample mul_135 = (m_history_12 * rsub_140);

 t_sample add_139 = (mul_134 + mul_135);

 t_sample mul_142 = (add_139 * m_fb_4);

 t_sample add_141 = (mul_108 + mul_142);

 t_sample history_69_next_137 = add_139;

 t_sample tap_148 = m_delay_13.read_linear(add_100);

 t_sample gen_80 = tap_148;

 t_sample mul_146 = (tap_148 * damp_63);

 t_sample mul_147 = (m_history_14 * rsub_152);

 t_sample add_151 = (mul_146 + mul_147);

 t_sample mul_154 = (add_151 * m_fb_4);

 t_sample add_153 = (mul_108 + mul_154);

 t_sample history_69_next_149 = add_151;

 t_sample tap_160 = m_delay_15.read_linear(add_101);

 t_sample gen_79 = tap_160;

 t_sample mul_158 = (tap_160 * damp_64);

 t_sample mul_159 = (m_history_16 * rsub_162);

 t_sample add_164 = (mul_158 + mul_159);

 t_sample mul_166 = (add_164 * m_fb_4);

 t_sample add_165 = (mul_108 + mul_166);

 t_sample history_69_next_161 = add_164;

 t_sample tap_173 = m_delay_17.read_linear(add_102);

 t_sample gen_78 = tap_173;

 t_sample mul_170 = (tap_173 * damp_65);

! Developing an Advanced Sampling System

!

!

24!

 t_sample mul_172 = (m_history_18 * rsub_171);

 t_sample add_177 = (mul_170 + mul_172);

 t_sample mul_178 = (add_177 * m_fb_4);

 t_sample add_176 = (mul_108 + mul_178);

 t_sample history_69_next_174 = add_177;

 t_sample tap_185 = m_delay_19.read_linear(add_103);

 t_sample gen_77 = tap_185;

 t_sample mul_182 = (tap_185 * damp_66);

 t_sample mul_184 = (m_history_20 * rsub_183);

 t_sample add_188 = (mul_182 + mul_184);

 t_sample mul_190 = (add_188 * m_fb_4);

 t_sample add_189 = (mul_108 + mul_190);

 t_sample history_69_next_186 = add_188;

 t_sample add_105 = ((((((((gen_77 + gen_78) + gen_79) +
gen_80) + gen_81) + gen_82) + gen_107) + gen_83) + 0);

 t_sample tap_88 = m_delay_21.read_linear(add_90);

 t_sample sub_84 = (add_105 - tap_88);

 t_sample mul_86 = (tap_88 * mul_106);

 t_sample add_85 = (add_105 + mul_86);

 t_sample tap_196 = m_delay_22.read_linear(add_104);

 t_sample sub_197 = (sub_84 - tap_196);

 t_sample mul_195 = (tap_196 * mul_106);

 t_sample add_194 = (sub_84 + mul_195);

 t_sample tap_202 = m_delay_23.read_linear(add_94);

 t_sample sub_203 = (sub_197 - tap_202);

 t_sample mul_201 = (tap_202 * mul_106);

 t_sample add_200 = (sub_197 + mul_201);

 t_sample tap_208 = m_delay_24.read_linear(add_92);

 t_sample sub_209 = (sub_203 - tap_208);

 t_sample mul_207 = (tap_208 * mul_106);

! Developing an Advanced Sampling System

!

!

25!

 t_sample add_206 = (sub_203 + mul_207);

 t_sample out1 = sub_209;

 m_delay_5.write(add_75);

 m_delay_24.write(add_206);

 m_delay_23.write(add_200);

 m_delay_22.write(add_194);

 m_delay_21.write(add_85);

 m_history_20 = history_69_next_186;

 m_delay_19.write(add_189);

 m_history_18 = history_69_next_174;

 m_delay_17.write(add_176);

 m_history_16 = history_69_next_161;

 m_delay_15.write(add_165);

 m_history_14 = history_69_next_149;

 m_delay_13.write(add_153);

 m_history_12 = history_69_next_137;

 m_delay_11.write(add_141);

 m_history_10 = history_69_next_122;

 m_delay_9.write(add_124);

 m_history_8 = history_69_next_110;

 m_delay_7.write(add_111);

 m_history_6 = history_69_next_76;

 m_delay_5.step();

 m_delay_7.step();

 m_delay_9.step();

 m_delay_11.step();

 m_delay_13.step();

 m_delay_15.step();

 m_delay_17.step();

! Developing an Advanced Sampling System

!

!

26!

 m_delay_19.step();

 m_delay_21.step();

 m_delay_22.step();

 m_delay_23.step();

 m_delay_24.step();

 // assign results to output buffer;

 (*(__out1++)) = out1;

 };

 return __exception;

 };

 inline void set_spread(t_param _value) {

 m_spread_1 = (_value < 0 ? 0 : (_value > 400 ? 400 : _value));

 };

 inline void set_damp(t_param _value) {

 m_damp_2 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

 inline void set_fb2(t_param _value) {

 m_fb_3 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

 inline void set_fb1(t_param _value) {

 m_fb_4 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

} State;

///

! Developing an Advanced Sampling System

!

!

27!

/// Configuration for the genlib API

///

/// Number of signal inputs and outputs

int gen_kernel_numins = 1;

int gen_kernel_numouts = 1;

int num_inputs() { return gen_kernel_numins; }

int num_outputs() { return gen_kernel_numouts; }

int num_params() { return 4; }

/// Assistive lables for the signal inputs and outputs

const char * gen_kernel_innames[] = { "in1" };

const char * gen_kernel_outnames[] = { "out1" };

/// Invoke the signal process of a State object

int perform(CommonState *cself, t_sample **ins, long numins, t_sample
**outs, long numouts, long n) {

 State * self = (State *)cself;

 return self->perform(ins, outs, n);

}

/// Reset all parameters and stateful operators of a State object

void reset(CommonState *cself) {

 State * self = (State *)cself;

 self->reset(cself->sr, cself->vs);

! Developing an Advanced Sampling System

!

!

28!

}

/// Set a parameter of a State object

void setparameter(CommonState *cself, long index, t_param value, void
*ref) {

 State * self = (State *)cself;

 switch (index) {

 case 0: self->set_damp(value); break;

 case 1: self->set_fb1(value); break;

 case 2: self->set_fb2(value); break;

 case 3: self->set_spread(value); break;

 default: break;

 }

}

/// Get the value of a parameter of a State object

void getparameter(CommonState *cself, long index, t_param *value) {

 State *self = (State *)cself;

 switch (index) {

 case 0: *value = self->m_damp_2; break;

 case 1: *value = self->m_fb_4; break;

 case 2: *value = self->m_fb_3; break;

 case 3: *value = self->m_spread_1; break;

 default: break;

 }

}

! Developing an Advanced Sampling System

!

!

29!

/// Get the name of a parameter of a State object

const char *getparametername(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].name;

 }

 return 0;

}

/// Get the minimum value of a parameter of a State object

t_param getparametermin(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].outputmin;

 }

 return 0;

}

t_param getparametermax(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].outputmax;

 }

 return 0;

}

char getparameterhasminmax(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].hasminmax;

 }

 return 0;

! Developing an Advanced Sampling System

!

!

30!

}

/// Get the units of a parameter of a State object

const char *getparameterunits(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].units;

 }

 return 0;

}

/// Get the size of the state of all parameters of a State object

size_t getstatesize(CommonState *cself) {

 return genlib_getstatesize(cself, &getparameter);

}

/// Get the state of all parameters of a State object

short getstate(CommonState *cself, char *state) {

 return genlib_getstate(cself, state, &getparameter);

}

/// set the state of all parameters of a State object

short setstate(CommonState *cself, const char *state) {

 return genlib_setstate(cself, state, &setparameter);

}

/// Allocate and configure a new State object and it's internal
CommonState:

! Developing an Advanced Sampling System

!

!

31!

void * create(t_param sr, long vs) {

 State *self = new State;

 self->reset(sr, vs);

 ParamInfo *pi;

 self->__commonstate.inputnames = gen_kernel_innames;

 self->__commonstate.outputnames = gen_kernel_outnames;

 self->__commonstate.numins = gen_kernel_numins;

 self->__commonstate.numouts = gen_kernel_numouts;

 self->__commonstate.sr = sr;

 self->__commonstate.vs = vs;

 self->__commonstate.params = (ParamInfo *)genlib_sysmem_newptr(4 *
sizeof(ParamInfo));

 self->__commonstate.numparams = 4;

 // initialize parameter 0 ("m_damp_2")

 pi = self->__commonstate.params + 0;

 pi->name = "damp";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_damp_2;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 1 ("m_fb_4")

 pi = self->__commonstate.params + 1;

! Developing an Advanced Sampling System

!

!

32!

 pi->name = "fb1";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_fb_4;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 2 ("m_fb_3")

 pi = self->__commonstate.params + 2;

 pi->name = "fb2";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_fb_3;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 3 ("m_spread_1")

 pi = self->__commonstate.params + 3;

 pi->name = "spread";

! Developing an Advanced Sampling System

!

!

33!

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_spread_1;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 400;

 pi->exp = 0;

 pi->units = ""; // no units defined

 return self;

}

/// Release all resources and memory used by a State object:

void destroy(CommonState *cself) {

 State * self = (State *)cself;

 genlib_sysmem_freeptr(cself->params);

 delete self;

}

} // cVerb::

! Developing an Advanced Sampling System

!

!

34!

[14]Gen Export of Delay Module

#include "cDelay_gendsp.h"

namespace cDelay_gendsp {

// global noise generator

Noise noise;

static const int GENLIB_LOOPCOUNT_BAIL = 100000;

// The State struct contains all the state and procedures for the gendsp
kernel

typedef struct State {

 CommonState __commonstate;

 Delay m_delay_10;

 Delay m_delay_9;

 Delay m_delay_8;

 Delay m_delay_7;

 int __exception;

 int vectorsize;

 t_sample m_damp_11;

 t_sample m_damp_12;

 t_sample m_feeder_13;

 t_sample m_x_6;

 t_sample m_x_4;

 t_sample samplerate;

 t_sample m_x_5;

! Developing an Advanced Sampling System

!

!

35!

 t_sample m_y_1;

 t_sample m_y_3;

 t_sample m_y_2;

 t_sample m_damp_14;

 // re-initialize all member variables;

 inline void reset(t_param __sr, int __vs) {

 __exception = 0;

 vectorsize = __vs;

 samplerate = __sr;

 m_y_1 = 0;

 m_y_2 = 0;

 m_y_3 = 0;

 m_x_4 = 0;

 m_x_5 = 0;

 m_x_6 = 0;

 m_delay_7.reset("m_delay_7", 44100);

 m_delay_8.reset("m_delay_8", 44100);

 m_delay_9.reset("m_delay_9", 44100);

 m_delay_10.reset("m_delay_10", 44100);

 m_damp_11 = 0.25;

 m_damp_12 = 0.25;

 m_feeder_13 = 1;

 m_damp_14 = 0.25;

 genlib_reset_complete(this);

 };

 // the signal processing routine;

 inline int perform(t_sample ** __ins, t_sample ** __outs, int __n)
{

 vectorsize = __n;

! Developing an Advanced Sampling System

!

!

36!

 const t_sample * __in1 = __ins[0];

 const t_sample * __in2 = __ins[1];

 const t_sample * __in3 = __ins[2];

 const t_sample * __in4 = __ins[3];

 t_sample * __out1 = __outs[0];

 t_sample * __out2 = __outs[1];

 if (__exception) {

 return __exception;

 } else if (((__in1 == 0) || (__in2 == 0) || (__in3 == 0) ||
(__in4 == 0) || (__out1 == 0) || (__out2 == 0))) {

 __exception = GENLIB_ERR_NULL_BUFFER;

 return __exception;

 };

 t_sample clamp_245 = ((m_damp_12 <= 0) ? 0 : ((m_damp_12 >= 1)
? 1 : m_damp_12));

 t_sample clamp_231 = ((m_damp_14 <= 0) ? 0 : ((m_damp_14 >= 1)
? 1 : m_damp_14));

 t_sample clamp_230 = ((m_damp_11 <= 0) ? 0 : ((m_damp_11 >= 1)
? 1 : m_damp_11));

 t_sample choice_15 = int(m_feeder_13);

 t_sample choice_16 = int(m_feeder_13);

 t_sample choice_17 = int(m_feeder_13);

 t_sample choice_18 = int(m_feeder_13);

 // the main sample loop;

 while ((__n--)) {

 const t_sample in1 = (*(__in1++));

 const t_sample in2 = (*(__in2++));

 const t_sample in3 = (*(__in3++));

 const t_sample in4 = (*(__in4++));

! Developing an Advanced Sampling System

!

!

37!

 t_sample clamp_246 = ((m_x_4 <= -1) ? -1 : ((m_x_4 >= 1)
? 1 : m_x_4));

 t_sample out1 = clamp_246;

 t_sample clamp_244 = ((m_y_1 <= -1) ? -1 : ((m_y_1 >= 1)
? 1 : m_y_1));

 t_sample out2 = clamp_244;

 t_sample gate_223 = (((choice_15 >= 1) && (choice_15 <
2)) ? m_y_2 : 0);

 t_sample gate_224 = (((choice_15 >= 2) && (choice_15 <
3)) ? m_y_2 : 0);

 t_sample gate_225 = (((choice_15 >= 3) && (choice_15 <
4)) ? m_y_2 : 0);

 t_sample gate_226 = ((choice_15 >= 4) ? m_y_2 : 0);

 t_sample gate_219 = (((choice_16 >= 1) && (choice_16 <
2)) ? m_x_6 : 0);

 t_sample gate_220 = (((choice_16 >= 2) && (choice_16 <
3)) ? m_x_6 : 0);

 t_sample gate_221 = (((choice_16 >= 3) && (choice_16 <
4)) ? m_x_6 : 0);

 t_sample gate_222 = ((choice_16 >= 4) ? m_x_6 : 0);

 t_sample gate_215 = (((choice_17 >= 1) && (choice_17 <
2)) ? m_x_5 : 0);

 t_sample gate_216 = (((choice_17 >= 2) && (choice_17 <
3)) ? m_x_5 : 0);

 t_sample gate_217 = (((choice_17 >= 3) && (choice_17 <
4)) ? m_x_5 : 0);

 t_sample gate_218 = ((choice_17 >= 4) ? m_x_5 : 0);

 t_sample gate_211 = (((choice_18 >= 1) && (choice_18 <
2)) ? m_y_3 : 0);

 t_sample gate_212 = (((choice_18 >= 2) && (choice_18 <
3)) ? m_y_3 : 0);

 t_sample gate_213 = (((choice_18 >= 3) && (choice_18 <
4)) ? m_y_3 : 0);

 t_sample gate_214 = ((choice_18 >= 4) ? m_y_3 : 0);

 t_sample tap_251 = m_delay_10.read_linear(in3);

! Developing an Advanced Sampling System

!

!

38!

 t_sample fold_236 = fold(tap_251, -1, 1);

 t_sample mix_366 = (fold_236 + (clamp_245 * (m_x_6 -
fold_236)));

 t_sample mix_249 = mix_366;

 t_sample tap_242 = m_delay_9.read_linear(in3);

 t_sample fold_234 = fold(tap_242, -1, 1);

 t_sample mix_367 = (fold_234 + (clamp_245 * (m_x_5 -
fold_234)));

 t_sample mix_240 = mix_367;

 t_sample mul_228 = ((mix_240 + mix_249) * 0.5);

 t_sample mix_368 = (mul_228 + (clamp_230 * (m_x_4 -
mul_228)));

 t_sample mix_232 = mix_368;

 t_sample tap_239 = m_delay_8.read_linear(in4);

 t_sample fold_233 = fold(tap_239, -1, 1);

 t_sample mix_369 = (fold_233 + (clamp_231 * (m_y_3 -
fold_233)));

 t_sample mix_237 = mix_369;

 t_sample tap_248 = m_delay_7.read_linear(in4);

 t_sample fold_235 = fold(tap_248, -1, 1);

 t_sample mix_370 = (fold_235 + (clamp_231 * (m_y_2 -
fold_235)));

 t_sample mix_243 = mix_370;

 t_sample mul_227 = ((mix_237 + mix_243) * 0.5);

 t_sample mix_371 = (mul_227 + (clamp_230 * (m_y_1 -
mul_227)));

 t_sample mix_229 = mix_371;

 t_sample x1_next_252 = mix_249;

 t_sample x2_next_253 = mix_240;

 t_sample x3_next_254 = mix_232;

 t_sample y2_next_255 = mix_237;

 t_sample y1_next_256 = mix_243;

! Developing an Advanced Sampling System

!

!

39!

 t_sample y3_next_257 = mix_229;

 m_delay_10.write(((((gate_213 + gate_217) + gate_219) +
in1) + gate_224));

 m_delay_9.write(((((gate_212 + gate_215) + gate_221) +
gate_226) + in2));

 m_delay_8.write(((((gate_211 + gate_216) + gate_222) +
gate_225) + in2));

 m_delay_7.write(((((gate_214 + gate_218) + gate_220) +
in1) + gate_223));

 m_x_6 = x1_next_252;

 m_x_5 = x2_next_253;

 m_x_4 = x3_next_254;

 m_y_3 = y2_next_255;

 m_y_2 = y1_next_256;

 m_y_1 = y3_next_257;

 m_delay_7.step();

 m_delay_8.step();

 m_delay_9.step();

 m_delay_10.step();

 // assign results to output buffer;

 (*(__out1++)) = out1;

 (*(__out2++)) = out2;

 };

 return __exception;

 };

 inline void set_damp3(t_param _value) {

 m_damp_11 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

 inline void set_damp1(t_param _value) {

! Developing an Advanced Sampling System

!

!

40!

 m_damp_12 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

 inline void set_feeder(t_param _value) {

 m_feeder_13 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

 inline void set_damp2(t_param _value) {

 m_damp_14 = (_value < 0 ? 0 : (_value > 1 ? 1 : _value));

 };

} State;

///

/// Configuration for the genlib API

///

/// Number of signal inputs and outputs

int gen_kernel_numins = 4;

int gen_kernel_numouts = 2;

int num_inputs() { return gen_kernel_numins; }

int num_outputs() { return gen_kernel_numouts; }

int num_params() { return 4; }

/// Assistive lables for the signal inputs and outputs

const char * gen_kernel_innames[] = { "in1", "in2", "in3", "in4" };

const char * gen_kernel_outnames[] = { "out1", "out2" };

! Developing an Advanced Sampling System

!

!

41!

/// Invoke the signal process of a State object

int perform(CommonState *cself, t_sample **ins, long numins, t_sample
**outs, long numouts, long n) {

 State * self = (State *)cself;

 return self->perform(ins, outs, n);

}

/// Reset all parameters and stateful operators of a State object

void reset(CommonState *cself) {

 State * self = (State *)cself;

 self->reset(cself->sr, cself->vs);

}

/// Set a parameter of a State object

void setparameter(CommonState *cself, long index, t_param value, void
*ref) {

 State * self = (State *)cself;

 switch (index) {

 case 0: self->set_damp1(value); break;

 case 1: self->set_damp2(value); break;

 case 2: self->set_damp3(value); break;

 case 3: self->set_feeder(value); break;

 default: break;

 }

}

! Developing an Advanced Sampling System

!

!

42!

/// Get the value of a parameter of a State object

void getparameter(CommonState *cself, long index, t_param *value) {

 State *self = (State *)cself;

 switch (index) {

 case 0: *value = self->m_damp_12; break;

 case 1: *value = self->m_damp_14; break;

 case 2: *value = self->m_damp_11; break;

 case 3: *value = self->m_feeder_13; break;

 default: break;

 }

}

/// Get the name of a parameter of a State object

const char *getparametername(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].name;

 }

 return 0;

}

/// Get the minimum value of a parameter of a State object

t_param getparametermin(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].outputmin;

! Developing an Advanced Sampling System

!

!

43!

 }

 return 0;

}

/// Get the maximum value of a parameter of a State object

t_param getparametermax(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].outputmax;

 }

 return 0;

}

/// Get parameter of a State object has a minimum and maximum value

char getparameterhasminmax(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].hasminmax;

 }

 return 0;

}

/// Get the units of a parameter of a State object

const char *getparameterunits(CommonState *cself, long index) {

 if (index >= 0 && index < cself->numparams) {

 return cself->params[index].units;

 }

 return 0;

! Developing an Advanced Sampling System

!

!

44!

}

/// Get the size of the state of all parameters of a State object

size_t getstatesize(CommonState *cself) {

 return genlib_getstatesize(cself, &getparameter);

}

/// Get the state of all parameters of a State object

short getstate(CommonState *cself, char *state) {

 return genlib_getstate(cself, state, &getparameter);

}

/// set the state of all parameters of a State object

short setstate(CommonState *cself, const char *state) {

 return genlib_setstate(cself, state, &setparameter);

}

/// Allocate and configure a new State object and it's internal
CommonState:

void * create(t_param sr, long vs) {

 State *self = new State;

 self->reset(sr, vs);

 ParamInfo *pi;

 self->__commonstate.inputnames = gen_kernel_innames;

 self->__commonstate.outputnames = gen_kernel_outnames;

 self->__commonstate.numins = gen_kernel_numins;

! Developing an Advanced Sampling System

!

!

45!

 self->__commonstate.numouts = gen_kernel_numouts;

 self->__commonstate.sr = sr;

 self->__commonstate.vs = vs;

 self->__commonstate.params = (ParamInfo *)genlib_sysmem_newptr(4 *
sizeof(ParamInfo));

 self->__commonstate.numparams = 4;

 // initialize parameter 0 ("m_damp_12")

 pi = self->__commonstate.params + 0;

 pi->name = "damp1";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_damp_12;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 1 ("m_damp_14")

 pi = self->__commonstate.params + 1;

 pi->name = "damp2";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_damp_14;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

! Developing an Advanced Sampling System

!

!

46!

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 2 ("m_damp_11")

 pi = self->__commonstate.params + 2;

 pi->name = "damp3";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_damp_11;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 // initialize parameter 3 ("m_feeder_13")

 pi = self->__commonstate.params + 3;

 pi->name = "feeder";

 pi->paramtype = GENLIB_PARAMTYPE_FLOAT;

 pi->defaultvalue = self->m_feeder_13;

 pi->defaultref = 0;

 pi->hasinputminmax = false;

 pi->inputmin = 0;

 pi->inputmax = 1;

 pi->hasminmax = true;

 pi->outputmin = 0;

! Developing an Advanced Sampling System

!

!

47!

 pi->outputmax = 1;

 pi->exp = 0;

 pi->units = ""; // no units defined

 return self;

}

/// Release all resources and memory used by a State object:

void destroy(CommonState *cself) {

 State * self = (State *)cself;

 genlib_sysmem_freeptr(cself->params);

 delete self;

}

} // cDelay_gendsp::

